| 研究生: |
何峰獻 Ho, Feng-Hsien |
|---|---|
| 論文名稱: |
合成具有面心立方結構的金釕核殼奈米立方體並討論其光催化性質 Synthesis and photocatalytic properties of Au@Ru core@shell nanocubes with a face-centered cubic structure |
| 指導教授: |
吳欣倫
Wu, Hsin-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 金 、釕 、奈米立方體 、核殼結構 、面心立方結構 、局部表面電漿共振 |
| 外文關鍵詞: | Au, Ru, nanocubes, core@shell, fcc structure, plasmon |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
釕(Ru)金屬在許多反應上作為催化劑都能有效降低反應的活化能,尤其是2013年所發表的面心立方(fcc)結構,有著比傳統六方最密堆積(hcp)結構更好的催化性能,因此如何合成面心立方結構的釕(Ru)金屬奈米粒子一直是科學家們努力的方向。
金屬奈米粒子的表面電漿共振性質因為其運用的廣泛性而受到越來越多的關注。透過照射特定波長的光,可以激發金屬奈米粒子的電漿性質並產生具有高能量的熱電子,藉由熱電子的傳遞可以使奈米粒子的催化性能進一步提升。
對於如何控制釕金屬的生長,晶種法提供了許多的可能性及方向性。本篇論文利用晶種法合成雙金屬核殼奈米結構,透過具有高電漿性質的金(Au)作為核心金屬與高催化性質的釕(Ru)金屬進行反應,成功合成出具有面心立方(fcc)結構的金釕核殼奈米立方體,並且學生使用TEM、SEM、EDS、UV-Vis、XPS、XRD等儀器來做產物的特性鑑定,最後研究金釕核殼奈米立方體在光照下而產生的熱電子對於催化產率效果的提升。
Ru nanostructure have been widely used in many important catalytic reactions, such as hydrogenation, CO oxidation, ammonia synthesis and oxygen evolution reactions. Since the discovery of face-centered cubic (fcc) structure in 2013, scientists are devoted to synthesize the fcc structure of Ru, because the fcc structure has better catalytic performance than hexagonal close-packed (hcp) structure.
Localized surface plasmon resonance (LSPR) properties of nanoparticles have been gained lots of attention, because plasmonic metals (e.g. Au, Ag and Cu) could generate hot electrons to improve catalytic properties.
In the study, we have used Au nanocubes as cores for epitaxial the growth of the Ru metal as the shell. We have successfully synthesized Au@Ru core@shell nanocubes with a fcc structure. Meanwhile, we studied the plasmonic effect of the hot electrons passing from the Au cores to the Ru shell.
1. Zhao, et al., J. Hazard. Mater. 2017, 332, 124-131.
2. Kitano, et al., Nat. Commun. 2015, 6, 6731-6739.
3. Honkala, et al,. Science 2005, 36, 555-558.
4. Joo, et al,. Nano Lett. 2010, 10, 2709-2713.
5. Gloag, et al., J. Am. Chem. Soc. 2018, 140, 12760-12764.
6. Yin, et al,. J. Am. Chem. Soc. 2012, 134, 20479-20489.
7. Watt, et al,. J. Am. Chem. Soc. 2013, 135, 606-609.
8. Kusada, et al., J. Am. Chem. Soc. 2013, 135, 5493-5496.
9. Zheng, et al., J. Am. Chem. Soc. 2016, 138, 16174-16181.
10. Lu, et al., Nat. Chem. 2018, 10, 456-461.
11. Zhao, et al., J. Am. Chem. Soc. 2019, 141, 7028-7036.
12. Vitos, et al., Surf. Sci. 1998, 411, 186-202.
13. Turchanin, et al., Powder Metall. Met. Ceram. 2008, 47, 26-39.
14. Sambles, et al., Contemp. Phys. 1991, 32, 173-183.
15. Schildkraut, et al., Appl. Opt. 1988, 27, 4587-4590.
16. Sincerbox, et al., Appl. Opt. 1981, 20, 1491-1496.
17. Ashwell, et al., Elect. Lett. 1996, 32, 2089-2091.
18. Niggemann, et al., Sens. Actuators B 1996, 34, 328-333.
19. Cahill, et al., Sens. Actuators B 1997, 45, 161-166.
20. Stemmler, et al., Sens. Actuators B 1999, 54, 98-105.
21. Fang, et al., Nano Lett. 2012, 12, 3808-3818.
22. Fang, et al., ACS Nano 2012, 6, 10222-10228.
23. Shaunak, et al., Nano Lett. 2012, 13, 240-247.
24. Frischkorn, et al., Chem. Rev. 2006, 106, 4207-4223.
25. Fan, et al., Acc. Chem. Res. 2016, 49, 2841-2850.
26. Gloag, et al,. Angew. Chem., Int. Ed. 2018, 57, 10241-10245.
27. Zhao, et al., Nano Lett. 2016, 16, 5310-5317.
28. Yancai, et al., Angew. Chem. 2016, 128, 5591-5595.
29. Haihang, et al., Nano Lett. 2016, 16, 2812-2817.
30. Zhao, et al., Chem. Mater. 2017, 29, 9227-9237.
31. Zhao, et al., ACS Catal. 2018, 8, 6948-6960..
32. Chaudhuri, et al., Chem. Rev. 2012, 112, 2373–2433.
33. Wu, et al., Langmuir 2010, 26, 12307-12313.
34. Yin, et al., Nature 2005, 437, 664-670.
35. Wiley, et al., Nano Lett. 2004, 4, 1733-1739.
36. Pastoriza, et al., Nano Lett. 2002, 2, 903-905.
37. Seo, et al., Angew. Chem. Int. Ed. 2008, 47, 763-767.
38. Mi, et al., J. Phys. Chem. C 2014, 118, 11104-11110.
39. Mahmoud, et al., Nano Lett. 2010, 10, 3764−3769.
40. Schrinner, et al., Science 2009, 323, 617−620.
41. Praharaj, et al., Langmuir 2004, 20, 9889−9892.