| 研究生: |
蔡立偉 Tsai, Li-Wei |
|---|---|
| 論文名稱: |
太陽風帆之薄膜扇葉的穩定性分析與動態響應 Stability Analysis and Dynamic Response of a Membrane Blade of Heliogyro Solar Sail |
| 指導教授: |
莊哲男
Juang, Jer-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 太陽風帆 、旋轉薄膜 、顛振穩定性 、動態響應 |
| 外文關鍵詞: | solar sail, spinning membrane, flutter stability, dynamic response |
| 相關次數: | 點閱:122 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於日本太空中心(JAXA)發展的太陽風帆「IKAROS」發射成功,美國太空中心(NASA)開始著手進行直升機式(heliogyro)太陽風帆的開發,並於近一兩年提出了明確的設計,將其命名為「HELIOS」。為更有效率地分析此種太陽風帆的薄膜扇葉,莊哲男教授提出了離散質點模型。過去許多研究利用此種方法已經完成了許多分析,包括非耦合的運動分析、偶合兩種運動方式的分析已及強健控制器的設計。本論文改良過去研究的離散質點模型,提出完全耦合運動的離散質點模型。另外,對於由太陽光壓造成的外力項也已完成推導。最重要的是,我們引進彈性模數到離散質點模型當中。本篇論文主要於分析太陽風帆之薄膜扇葉在固定轉數的情況下的穩定性。在系統頻率變化的分析中我們發現顛振(flutter)的現象,此為能夠決定系統穩定性的重要因素。透過累積不同質點數模型的數據,完成對於實際薄膜扇葉不穩定區間的預測。最後,我們利用非線性系統的動態響應來佐證穩定性的分析結果。
In the past few years, NASA proposed and researched a clear design for a heliogyro solar sail called HELIOS (High performance, Enabling, Low-cost, Innovative, Operational Solar sail). A discrete-mass approach has facilitated a large amount of analysis on the spinning membrane blade. In this thesis, we improve the discrete-mass model from that of past research. First, the representation of the motion of the blade has evolved from a system of dual coupling to become fully coupled. Second, the external forcing terms by the solar radiation pressure are derived and applied to the system. Third, the stiffness property is included into the discrete-mass model. Furthermore, this thesis presents an analysis of the stability of the membrane blade under a constant spin rate and varying intensity from solar radiation pressure. The flutter phenomenon, which could be a significant evidence to decide the system's stability, has been demonstrated in the simulation of frequency variation. By collecting results from models consisting of different number of point masses, the convergent conditions for system instability (flutter) have been found. Also, we provide simulations of the non-linear system response to verify the stability results.
[1] Wikipedia, “Solar sail - wikipedia, the free encyclopedia,” 2016, [Online; accessed 20-May-2016]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Solar sail&oldid=720942938
[2] O. Mori, Y. Shirasawa, Y. Mimasu, Y. Tsuda, H. Sawada, T. Saiki, T. Yamamoto,K. Yonekura, H. Hoshino, J. Kawaguchi et al., “Overview of ikaros mission,” in Advances in Solar Sailing. Springer, 2014, pp. 25–43.
[3] R. H. MacNeal, “The heliogyro-an interplanetary flying machine,” 1967.
[4] R. H. Mac Neal, “Structural dynamics of the heliogyro,” 1971.
[5] W. K. Wilkie, J. E. Warren, L. G. Horta, K. H. Lyle, J.-N. Juang, J. D. Littell, R. G. Bryant, M. W. Thomson, P. E. Walkemeyer, D. V. Guerrant et al., “Heliogyro solar sail
research at nasa,” in Advances in Solar Sailing. Springer, 2014, pp. 631–650.
[6] NASA, “Helios advanced solar sail concept - youtube,” 2014, [Online; accessed 20-May-2016]. [Online]. Available: https://youtu.be/4F97NdwvmUM
[7] C.-H. Hung, “Dynamic analysis and 3d simulation of a spinning thin membrane,” 2013, master thesis.
[8] J.-N. Juang, H.-H. Lu, L. G. Horta, and W. K. Wilkie, “Challenges associated with system identification and control of a heliogyro membrane blade,” in Advances in Solar Sailing. Springer, 2014, pp. 705–716.
[9] H.-H. Lu, “Robust controller design of a spinning thin membrane,” 2014, master thesis.
[10] T.-H. Hsiao, “Dynamic analysis and experiment of a spinning thin membrane during deployment,” 2015, master thesis.
[11] D. H. Hodges and E. Dowell, “Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades,” 1974.
[12] S. C. Gibbs IV and E. H. Dowell, “Solarelastic stability of the heliogyro,” in Advances in Solar Sailing. Springer, 2014, pp. 651–665.
[13] Wikipedia, “Radiation pressure — wikipedia, the free encyclopedia,” 2016, [Online; accessed 28-June-2016]. [Online]. Available: https://en.wikipedia.org/w/index.php?
title=Radiation_pressure&oldid=723717433
[14] W. A. Hollerman, “The physics of solar sails,” 2003.
[15] V. V. Novozhilov, Foundations of the nonlinear theory of elasticity. Courier Corporation, 1999.
[16] S. P. Timoshenko and J. M. Gere, Theory of elastic stability. Courier Corporation, 2009.