| 研究生: |
羅鼎翔 Lo, Ting-Hsiang |
|---|---|
| 論文名稱: |
智慧型複合材料結構之邊界元素振動分析 Vibration Analysis of Smart Composites via Boundary Element Method |
| 指導教授: |
胡潛濱
Hwu, Chyan-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 史磋公式 、異向性彈性力學 、壓電材料 、磁電彈材料 、振動分析 |
| 外文關鍵詞: | Stroh formalism, Anisotropic elasticity, piezoelectric material, magneto-electro-elastic material, dynamic analysis |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在異向性彈性力學的探討上,史磋公式(Stroh Formalism)可以藉由擴充相關材料性質矩陣的維度大小,進而延伸應用至壓電材料,以及磁電彈材料。本文中,利用此特性,則文獻中提及的無限板、孔洞、裂縫和異質問題之解析解,以及邊界元素法基本解皆不須重新推導,在智慧型材料分析中,我們經常以彈性複材板做為基材,以壓電或磁電彈材料作為感測器,因此本文也運用了矩陣的調適法,使得我們可以同時處理包含異向性彈性材料、壓電材料以及磁電彈材料的題目。而在邊界元素振動的探討中,我們一樣可以藉由史磋公式的特性,調整部分矩陣維度以及內容,不須經過重新推導即可直接延用至壓電材料以及磁電彈材料,最後將研究成果融入師門使用MATLAB程式語言撰寫出一套命名為AEPH(Anisotropic Elastic Plate_Hwu)的結構分析軟體中。
為了驗證擴充的正確性,本文分析以下三種狀況,自由振動、穩態振動以及暫態振動的問題。在這些問題中,我們同時也加入了無限板、孔洞、裂縫以及異質振動的相關問題,探討其位移、應力、電場以及磁場與時間的關係,並經由商用有限元素分析軟體 ANSYS 來進行比對,以證明此擴充方式的可行性。
Based upon the special feature of Stroh formalism, the analysis of two-dimensional anisotropic elasticity can be extended to the piezoelectric and magneto-electro-elastic materials (MEE) by expanding the related matrix dimension. By using the adaptable adjustment technique, the structure with simultaneous existence of anisotropic elastic, piezoelectric and magneto-electro-elastic materials can know be solved. With this technique, the analytical solutions, boundary element methods and even the dynamic problem in boundary element methods can now be employed in the problem with multiple kinds of materials. To show the correctness of the expansion in dynamic analysis of boundary element methods in piezoelectric and magneto-electro-elastic materials, three different kinds of analysis is considered. Free vibration, Steady-state vibration and Transient vibration are shown in this paper. Furthermore, the problem of a plate with cracks, inclusions, or holes are also mentioned. To testify the piezoelectric and magneto-electro-elastic dynamic analysis, the result calculated by the structure analysis software of our group AEPH will be compare with the commercial finite element software ANSYS.
1. Brebbia, C., J. Telles, and L. Wrobel, Boundary Element Techniques Springer-Verlag. Berlin and New York, 1984.
2. Sokolnikoff, I.S., Mathematical theory of elasticity. 1956: McGraw-Hill book company.
3. Chen, Y.C. and C. Hwu, Boundary element method for vibration analysis of two-dimensional anisotropic elastic solids containing holes, cracks or interfaces. Engineering Analysis with Boundary Elements, 2014. 40: p. 22-35.
4. Stroh, A., Dislocations and cracks in anisotropic elasticity. Philosophical magazine, 1958. 3(30): p. 625-646.
5. Stroh, A., Steady state problems in anisotropic elasticity. Journal of Mathematics and Physics, 1962. 41(1-4): p. 77-103.
6. Eshelby, J., W. Read, and W. Shockley, Anisotropic elasticity with applications to dislocation theory. Acta metallurgica, 1953. 1(3): p. 251-259.
7. Ting, T.C.-t., Anisotropic Elasticity : Theory and Applications. 1996.
8. Hwu, C., Anisotropic Elastic Plates. 2010.
9. Hsieh, M. and C. Hwu. Extended Stroh-like formalism for magneto-electro-elastic composite laminates. in International Conference on Computational Mesomechanics Associated with Development and Fabrication of Use-Specific Materials. 2003.
10. Chen, Y. and C. Hwu, Green's Functions for anisotropic/piezoelectric bimaterials and their applications to boundary element analysis. Computer Modeling in Engineering and Sciences (CMES), 2010. 57(1): p. 31.
11. Hwu, C., W.-R. Chen, and T.-H. Lo, Green’s function of anisotropic elastic solids with piezoelectric or magneto-electro-elastic inclusions. International Journal of Fracture, 2019. 215(1-2): p. 91-103.
12. Hwu, C. and W.J. Yen, Green's functions of two-dimensional anisotropic plates containing an elliptic hole. International Journal of Solids and Structures, 1991. 27(13): p. 1705-1719.
13. Hwu, C. and W.J. Yen, Plane problems for anisotropic bodies with an elliptic hole subjected to arbitrary loadings. Chinese Journal of Mechanics, 1992. 8(2): p. 123.
14. Hwu, C. and W.J. Yen, On the anisotropic elastic inclusions in plane elastostatics. Journal of applied mechanics, 1993. 60(3): p. 626-632.
15. 陳昱志, 含缺陷與界面之平板邊界元素分析. 成功大學航空太空工程研究所.
16. 陳威任, 含異向性彈性/壓電/磁電彈異質之應力分析. 成功大學航空太空工程研究所.
17. Nardini, D. and C.A. Brebbia, A new approach to free vibration analysis using boundary elements. Applied mathematical modelling, 1983. 7(3): p. 157-162.
18. Partridge, P., C. Brebbia, and L. Wrobel, The dual reciprocity boundary element methodComputational Mechanics Publications. Southampton, Boston, 1992.
19. Rogacheva, N.N., The theory of piezoelectric shells and plates. 1994.
20. Soh, A.K. and A.J.X. Liu, On the Constitutive Equations of Magnetoelectroelastic Solids. Journal of Intelligent Material Systems and Structures, 2005. 16(7-8): p. 597-602.
21. Hwu, C., C.-L. Hsu, and W.-R. Chen, Corrective evaluation of multi-valued complex functions for anisotropic elasticity. Mathematics and Mechanics of Solids, 2017. 22(10): p. 2040-2062.
22. Kögl, M., Free vibration analysis of anisotropic solids with the boundary element method. Engineering analysis with boundary elements, 2003. 27(2): p. 107-114.
23. John, C.H., A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft. Journal of the Aeronautical Sciences, 1950. 17(9): p. 540-550.
24. 王芮菁, 異向性彈性力學視窗軟體之設計與優化. 成功大學航空太空工程研究所.
25. AEPH使用手冊.
26. Jiang, X. and E. Pan, Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes. International journal of solids and structures, 2004. 41(16-17): p. 4361-4382.
27. 柯瀚斌, 二次邊界元素之二維磁電彈分析. 成功大學航空太空工程研究所.
28. Stroud, A.H. and D. Secrest, Gaussian quadrature formulas. 1966.