研究生: |
林承郁 Lin, Cheng-Yu |
---|---|
論文名稱: |
串接式硫化物量子點敏化太陽能電池之研究 Sulfide Quantum Dot-Sensitized Cells with Tandem Arrangement |
指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 光電化學電池 、CuInS2量子點 、量子點敏化太陽能電池 、硫化鉛 、連續離子層吸附反應 |
外文關鍵詞: | Photoelectrochemical cell, CuInS2 quantum dots, quantum dot-sensitized solar cell, PbS, successive ionic layer adsorption and reaction |
相關次數: | 點閱:87 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中利用連續離子溶液披覆與反應方式,將PbS沉積於FTO導電玻璃上並作為量子點敏化太陽能電池之相對電極,藉以提高電池之整體表現。藉由交流阻抗分析與極化曲線之量測,PbS相對電極在polysulfide電解質中的電荷轉移電阻比一般的白金電極低上許多。而經由Mott-Schottky 之測試可知PbS具有p型半導體之特性。照光下,p型半導體PbS的費米能階會往價電帶移動,進而增加電池的開環電壓(Voc)。同時,因為具有較小的能隙值,在正照式的電池組合下PbS可以利用未被工作電極吸收的長波長入射光。且在電解質中p型半導體為了使費米能接平衡,能帶會向下彎曲,使電子更容易向電解質的方向流動、還原電解質。是故,藉由此效應以PbS作為相對電極可進一步提高量子點敏化太陽能電池的光電流密度。將PbS工作電極與本研究室所發展之TiO2/CuInS2/CdS/ZnS工作電極組合成串接式太陽能電池,在一個太陽光強度的模擬器照射下進行光電轉換效率之量測可得短路電流(Jsc) of 18.26 mA cm-2,開環電壓573 mV, 填充因子(fill factor) 44.47,與光電轉換效率4.83 %。
In this study, a photoactive PbS thin layer was deposited on the fluorine-doped tin oxide (FTO) via successive ionic solution coating and reaction process, and it was used as counter electrode to raise the exhibition in power conversion efficiency (PCE) of the quantum dot-sensitized solar cell (QDSSC). Under illumination, the Fermi level of the p-type photoactive PbS counter electrode shifts toward the direction of valance band, and the photovoltage increases due to it equals to a sum of the chemical potential differences between the anode and cathode in a tandem QDSSC. At the same time, with small band gap PbS can also utilize the light which was not absorbed by working electrode to increase the current density. The tandem QDSSC exhibits a short-circuit photocurrent (Jsc) of 18.26 mA cm-2, an open-circuit photovoltage (Voc) of 573 mV, a fill factor of 44.47, and a conversion efficiency of 4.83 % under one-sun illumination.
[1] Grätzel M., Nature. 414, 338 (2001).
[2] Brown A. S.; Green M. A., Phys. E. 14, 96 (2002).
[3] Lee, Y. L.; Huang, B. M.; Chien, H. T. Chem. Master. 20, 6903 (2008).
[4] Tachibana, Y.; Akiyama, H. Y; Ohtsuka, Y; Torimoto, T.; Kuwabata, S. Chem. Lett. 36, 88 (2007).
[5] Adlkofer K.; Tanaka M. Langmuir. 17, 4267 (2001).
[6] Murphy J. E.; Beard M. C.; Norman A. G.; Ahrenkiel S. P.; Johnson J. C.; Yu P.; Micic O. I.; Ellingson R. J.; Nozik A. J. J. Am. Chem. Soc. 128, 3241 (2006).
[7] Chen Y.; Johnson E.; Peng X. J. Am. Chem. Soc. 129, 10937 (2007).
[8] Jun Y.-W.; Lee J. H.; Choi J. S.; Cheon J. J. Phys. Chem. B. 109, 14795 (2005).
[9] Murray C. B.; Kagan C. R.; Bawendi M. G. Annu. Rev. Mater.Sci. 30, 545 (2000).
[10] Pamplin B. R. Crystal Growth; Pergamon Press: New York (1975).
[11] Jiang Y. Forced Hydrolysis and Chemical Co-Precipitation. In Handbook of Nanophase and Nanostructured Materials; Wang,Z. L., Liu, Y., Zhang, Z., Eds.; Kluwer Academic: New York, p59 (2003).
[12] Jongnam P.; Jin J.; Soon Gu K.; Youngjin J.; Taeghwan H. Angew. Chem. Int. Ed. 46, 4630 (2007).
[13] Murray C. B.; Norris D. J.; Bawendi M. G. J. Am. Chem. Soc.115, 8706 (1993).
[14] Tanori J.; Pileni M. P. Langmuir. 13, 639 (1997).
[15] Legrand J.; Petit C.; Pileni M. P. J. Phys. Chem. B. 105, 5643 (2001).
[16] Kawai T.; Fujino A.; Kon-No K. Colloids Surf. A. 100, 245 (1996).
[17] Chang S. Y.; Liu L.; Asher S. A. J. Am. Chem. Soc. 116, 6739 (1994).
[18] Joselevich E.; Willner I. J. Phys. Chem. 98, 7628 (1994).
[19] Chhabra V.; Pillai V.; Mishra B. K.; Morrone A.; Shah D. O. Langmuir. 1995, 11, 3307(1995)
[20] Gan L. M.; Zhang K.; Chew C. H. Colloids Surf. A 110, 199 (1996).
[21] Chang C. L.; Fogler H. S. Langmuir. 13, 3295 (1997).
[22] Esquena J.; Tadros T. F.; Kostarelos K.; Solans C. Langmuir. 13, 6400 (1997).
[23] Lopez-Perez J. A.; Lopez-Quintela M. A.; Mira J.; Rivas J.; Charles S. W. J. Phys. Chem. B 101, 8045 (1997).
[24] Li Y.; White T.; Lim S. H. Rev. Adv. Mater. Sci. 5, 211 (2003).
[25] Coln G.; Hidalgo M. C.; Navo J. A. Catal. Today. 76, 91 (2002)
[26] Uekawa N.; Kajiwara J.; Kakegawa K.; Sasaki Y. J. Colloid Interface Sci. 250, 285 (2002).
[27] Lackey W. J. Nucl. Technol. 49, 321 (1980).
[28] Woodhead J. L. Sci. Ceram. 12, 179 (1983).
[29] Chatterjee A.; Chakravorty D. J. Mater. Sci. 27, 4115 (1992).
[30] Gao J.; Qi Y.; Yang W.; Guo X.; Li S.; Li X. Mater. Chem.Phys. 82, 602 (2003).
[31] Kiss K.; Magder J.; Vukasovich M. S.; Lockhart R. J. J. Am. Ceram. Soc. 49, 291 (1966).
[32] Shen J.; Zhang Z.; Wu G. J. Chem. Eng. Jpn. 36, 1270 (2003).
[33] Viano A.; Mishra S. R.; Lloyd R.; Losby J.; Gheyi T. J. Non-Cryst. Solids. 325, 16 (2003).
[34] Mondelaers D.; Vanhoyland G.; Van den Rul H.; D’Haen J.;Van Bael M. K.; Mullens J.; Van Poucke L. C. Mater. Res. Bull. 37, 901 (2002).
[35] Zeng W. M.; Gao L.; Guo J. K. Nanostruct. Mater. 10, 543 (1998).
[36] Pathak L. C.; Singh T. B.; Verma A. K.; Ramachandrarao P.J. Metall. Mater. Sci. 42, 93 (2000).
[37] Grosso D.; Sermon P. A. J. Mater. Chem. 10, 359 (2000).
[38] Chang Y. S.; Chang Y. H.; Chen I. G.; Chen G. J.; Chai Y. L. J. Cryst. Growth. 243, 319 (2002).
[39] Wang X.; Zhang Z.; Zhou S. Mater. Sci. Eng. B. 86, 29 (2001).
[40] Veith M.; Mathur S.; Lecerf N.; Huch V.; Decker T.; Beck H.P.; Eiser W.; Haberkorn R. J. Sol-Gel Sci. Technol. 17, 145 (2000).
[41] Sharma N.; Shaju K. M.; Rao G. V. S.;Chowdari B. V. R. Electrochem. Commun. 4, 947 (2002).
[42] Burukhin A. A.; Churagulov B. R.; Oleynikov N. N. High Press. Res. 20, 255 (2001).
[43] Lu S. W.; Lee B. I.; Wang Z. L.; Guo J. K. J. Cryst. Growth 219, 269 (2000)
[44] Chen C. C.; Jiao X.; Chen D.; Zhao Y. Mater. Res. Bull. 36, 2119 (2001)
[45] Maclaren I.; P. A. Trusty C. B. Ponton Acta Mater. 47, 779 (1999)
[46] Yu S.-H.; Shu L.; Wu Y.-S.; Qian Y.-T.; Xie Y.; Yang L. Mater. Res. Bull. 33, 1207 (1998)
[47] Qian X. F.; Zhang X. M.; Wang C.; Tang K. B.; Xie Y.; QianY. T. Mater. Res. Bull. 34, 433 (1999)
[48] Wang C.; Zhang W. X.; Qian X. F.; Zhang X. M.; Xie Y.; QianY. T. Mater. Lett. 40, 255 (1999)
[49] Qian X. F.; Zhang X. M.; Wang C.; Wang W. Z.; Qian Y. T. Mater. Res. Bull. 33, 669 (1998)
[50] Yang J.; Mei S.; Ferreira J. M. F. Mater. Sci. Eng. C 15, 183 (2001)
[51] Yoshimura M.; Somiya S. Am. Ceram. Soc. Bull. 59, 246 (1980)
[52] Chen D.; Shen G. Z.; Tang K. B.; Liu Y. K.; Qian Y. T. Appl. Phys. A 77, 747 (2003)
[53] Shao M. W.; Mo M. S.; Cui Y.; Chen G.; Qian Y. T. J. Cryst. Growth 233, 799 (2001)
[54] Hu J. Q.; Lu Q. Y.; Tang K. B.; Deng B.; Jiang R. R.; QianY. T.; Yu W. C.; Zhou G. E.; Liu X. M.; Wu J. X. J. Phys. Chem. B 104, 5251 (2000)
[55] Cai W.; Zhang L. J. Phys. Condensed Matter 9, 7257 (1997).
[56] Maya L.; Paranthaman M.; Thundat T.; Bauer M. L. J. Vac.Sci. Technol. B 14, 15 (1996).
[57] Li W.; Gao L.; Guo J. K. Nanostruct. Mater. 10, 1043 (1998).
[58] Indackers D.; Janzen C.; Rellinghaus B. Nanostruct. Mater. 10, 247 (1998).
[59] Depero L. E.; Bonzi P.; Musci M.; Casale C. J. Solid State Chem. 111, 247 (1994).
[60] Yang Y.; Leppert V. J.; Risbud S. H.; Twamley B.; Power P. P.; Lee H. W. H. Appl. Phys. Lett. 74, 2262 (1999).
[61] Okuyama K.; Lenggoro I. W.; Tagami N. J. Mater. Sci. 32, 1229 (1997).
[62] Binder J. R.; Wedemeye, H. Adv. Mater. 9, 1049 (1997).
[63] Valentini A.; Carreno N. L. V.; Probst L. F. D.; Leite E. R.; Longo E. Microporous Mesoporous Mater. 68, 151 (2004).
[64] Jou S.; Hsu C. K. Mater. Science Eng. B 106, 275 (2004).
[65] Dumitrache F.; Morjan I.; Alexandrescu R.; Morjan R. E.;Voicu I.; Sandu I.; Soare I.; Ploscaru M.; Fleaca C.; CiupinaV.; Prodan G.; Rand B.; Brydson R.; Woodword A. DiamondRelat. Mater. 13, 362 (2004).
[66] Sen R.; Govindaraj A.; Rao C. N. R. Chem. Phys. Lett. 267, 276 (1997).
[67] Sen R.; Govindaraj A.; Rao C. N. R. Chem. Mater. 9, 2078 (1997).
[68] Rao C. N. R.; Govindaraj A.; Sen, R.; Satishkumar B. C. Mater. Res. Innovations 2, 128 (1998).
[69] Rao C. N. R.; Sen R.; Satishkumar B. C.; Govindaraj A. Chem. Commun. 1525 (1998).
[70] Alivisatos A. P. J. Phys. Chem. 100, 13226 (1996).
[71] Brus L. E. J. Chem. Phys. 79, 5566 (1983).
[72] Brus L. E. J. Chem. Phys. 80, 4403 (1984).
[73] Kayanuma Y. Solid State Commun. 59, 405 (1986).
[74] Nair S. V.; Sinha S. Phys. Rev. B 35, 4098 (1987).
[75] Knox R. S. Theory of Excirom; Solid State Physics Supplement 5; Academic Press: New York, (1963)
[76] Wang Y.; Herron N. Phys. Rev. B 42, 7253 (1990).
[77] Wang Y. and Herron N. J. Phys. Chem. 95, 525 (1991).
[78] Brus L. J. Phys. Chem. 90, 2555 (1986).
[79] Emin S.; Singh S. P.; Han L. Solar Energy. 85, 1264 (2011).
[80] Chang C. H.; Lee Y. L. Appl. Phys. Lett. 91 053503 (2007)
[81] Hodes G,; Manassen D,; Cahen J. Electrochem. Soc. 127, 544 (1980)
[82] Shalom M.; Hod I.; Tachan Z,; Buhbut S.; Tirosh S.; Zaban A. Energy Environ. Sci. 4, 1874 (2011).
[83] Li T. L.; Teng H. J. of Material Chemistry. 20, 3656 (2010)
[84] Li T. L.; Lee Y. L.; Teng H. Energy & Environ. Sci. 5, 5315 (2012)