簡易檢索 / 詳目顯示

研究生: 張心玫
Chang, Hsin-Mei,
論文名稱: 受 Ha-ras 調控之基因Lutheran blood antigen 在人類膀胱致癌化過程之特性研究
Characterization of a Ras up-regulated gene Lutheran blood antigen in human bladder carcinogenesis
指導教授: 劉校生
Liu, Hsiao- Sheng
周楠華
Chow, Nan- Haw
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 90
中文關鍵詞: 細胞黏膀胱癌
外文關鍵詞: Ras, Lutheran blood antigen, bladder cancer
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   膀胱癌為台灣常見的癌症之一。在烏腳病流行及長期飲用含砷量高的井水的地區,罹患膀胱癌的比例明顯增加。但是引起膀胱癌的致病機轉仍然不清楚。在我們的實驗室,利用微陣列技術分析人類正常膀胱移形上皮細胞株 E6 和外送入帶有H-ras過度表現的細胞株 E6RC,發現在一連串被Ras所活化的基因中有一個基因命名為Lu。Lu為一血型抗原,屬於免疫球蛋白基因家族的一員。利用免疫染色發現,Lu主要分佈在膀胱癌細胞的細胞膜上,且Lu的表現量和腫瘤的分化等級呈正相關。暗示Lu在膀胱癌的發生過程中扮演一個重要的調節角色,但是詳細的機制仍然不清楚。本研究發現到,活化的Ras可以活化Lu 啟動子,進而造成Lu基因的過量表現。此外以一株持續表現Lu基因的老鼠纖維母細胞株NIH-Lu,進一步探討Lu在膀胱癌發生過程中所影響的生物特性及相關的訊息傳遞。我們的結果顯示,Lu過度表現可使細胞轉形。當Lu和它的受體laminin結合後,會活化PI3K/Akt訊息傳遞路徑,對抗MTX所引起的細胞計畫性凋亡(apoptosis)。Lu也會藉由和它的受體作用活化Erk/MAPK 訊息路徑,進而活化下游Rho之活性,但是抑制Rac的活性,而改變細胞骨架,增加stress fiber的形成和細胞黏附的能力。對於Lu基因的研究及了解,可幫助發展新的方法治療Lu基因度表現的膀胱癌細胞。

      Bladder cancer is one of the most frequently occurred cancers in Southern Taiwan and has a positive correlation with black foot disease and arsenic exposure. However, the underlined mechanism of bladder carcinogenesis remains unknown. Using microarray assay, we identified a Ras oncogene up-regulated membrane protein designated Lutheran, a blood group antigen (Lu), which is a member of the immunoglobulin superfamily. Our preliminary data showed that Lu expression was detected around the membrane of bladder cancer cells and demonstrated a positive correlation of Lu expression with histological grading, suggesting that Lu may play a pivotal role in the tumorigenesis of human bladder. However, the role of Lu in bladder cancer has not been reported. In this study, the relationship between Ras and Lu was confirmed using a Lu promoter driven luciferase reporter system. Furthermore, to reveal Lu-related biological responses in bladder cancer cells, we constructed a plasmid encoding human Lu, designated pcDNA3.1-Lu, and introduced it into NIH3T3 cells to establish a stable cell line, NIH-Lu. We demonstrated that over-expressed Lu induces cell transformation. Additionally, interaction of laminin and Lu suppresses the MTX-induced apoptosis through PI3K/Akt signaling pathway. In this study, we provide the first evidence that interaction of laminin and Lu utilize Erk/MAPK pathway to coordinative regulate Rho and Rac which control cell adhesion and stress fiber formation. This study highlights the potential of Lu as a bio-target for anticancer therapy.

    I. Abstract 1. Abstract 1 2. 中文摘要 2 II. 誌謝 3 III. Contents 4 IV. Figure list 6 V. Introduction 9 VI. Materials and methods 1. Bacterial strain and cell lines 14 2. Culture medium and condition 14 3. Construction of inducible Lu plasmid and Lu promoter reporter system 18 4. Plasmid and preparation 18 5. Establishment of a stable cell line harboring exogenous gene 21 6. RNA extraction 22 7. cDNA preparation 23 8. Real-Time PCR 24 9. Western blotting 24 10. Immunohistochemical staining 27 11. Soft agar assay 28 12. Focus forming assay 28 13. Cell growth analysis 28 14. BrdU incorporation assay 29 15. Wound healing assay 30 16. Cell migration assay 31 17. Cell adhesion assay 32 18. GTPase pull-down assay 32 19. Cell viability staining 34 VII. Results 1. Relationship between Ras and Lu 35 2. Expression pattern of Lu in human bladder cancer cell lines 36 3. Construction of a plasmid harboring Lu with N-terminal Flag fusion protein and an inducible plasmid harboring Lu gene 36 4. Localization of exogenous Lu expression in TSGH8301 cells 37 5. Establishment of a stable cell line expressing exogenous Lu gene 37 6. Characterization of NIH-Lu cells 38 7. The role of Lu in cell adhesion 40 8. The role of Lu in cell migration 40 9. The involvement of Erk, RhoA, and Rac in laminin/Lu induced biological activities 41 10. The effects of Lu over-expression on human bladder cancer cells 43 VIII. Discussion 44 IX. References 51 X. 自述 90

    Allen, W.E., Jones, G.E., Pollard, J.W. and Ridley, A.J. Rho, Rac and Cdc42
    regulate actin organization and cell adhesion in macrophages. J Cell Sci.
    110: 707-720, 1997.

    Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y.
    and Kaibuchi, K. Formation of actin stress fibers and focal adhesions
    enhanced by Rho-kinase. Science. 275: 1308-1311, 1997.

    Akimov, S.S., and Belkin, A.M. Opposing roles of Ras/Raf oncogenes and the
    MEK1/ERK signaling module in regulation of expression and adhesive
    function of surface transglutaminase. J Biol Chem, 278: 35609-35619,
    2003.

    Barbacid, M. ras genes, Annu Rev Biochem. 56: 779-827, 1987.

    Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49:
    4682-4689, 1989.

    Barbacid, M. ras oncogenes: their role in neoplasia. Eur J Clin Invest.
    20: 225-235, 1990.

    Campbell, I.G., Foulkes,W.D., Senger, G., Trowsdale, J., Garin-Chesa, P. and
    Rettig, W.J. Molecular cloning of the B-CAM cell surface glycoprotein of
    epithelial cancers: a novel member of the immunoglobulin superfamily.
    Cancer Res. 54: 5761-5765, 1994.

    Bernemann, T.M., Podda, M., Wolter, M. and Boehncke, W.H. Expression of
    the basal cell adhesion molecule (B-CAM) in normal and diseased human
    skin. J Cutan Pathol. 27: 108-111, 2000.

    Bar-Sagi, D. A Ras by any other name. Mol Cell Bio., 21: 1441-1443, 2001.

    Brakebusch, C. and Fassler, R. The integrin-actin connection, an eternal love
    affair. Embo J. 22: 2324-2333, 2003.

    Bukalo, O., N. Fentrop, Lee, A.Y., Salmen, B., Law, J.W., Wotjak, C.T.,
    Schweizer,M., Dityatev,A. and Schachner, M. Conditional ablation of the
    neural cell adhesion molecule reduces precision of spatial learning, long-term
    potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci. 24: 1565-1577, 2004.

    Burridge, K. and Wennerberg, K. Rho and Rac take center stage. Cell.
    116: 167-179, 2004.

    Chambers, A.F. and Tuck, A.B. Ras-responsive genes and tumor metastasis.
    Crit Rev Oncog. 4: 95-114, 1993.

    Chang, T.Y., Wen, Y.Y., Yeh, H.H., Wang, S.T., Su, I.J. and Liu, H.S. Plasmid
    harboring lac repressor and tTA activator genes can regulate two inducible
    genes in mammalian cells. Biotechniques. 27: 466-469, 1999.

    Christofori, G. Changing neighbours, changing behaviour: cell adhesion
    molecule- mediated signalling during tumour progression. Embo J.
    22: 2318-2323, 2003.

    Chow, N.H., Chang, C.H., Cheng, T.Y., Tzai T.S., Ho, C.L., Dai, Y.C., Liu
    H.S. The potential significance of Lutheran blood group antigen in human
    urothelial carcinogenesis. CancerDetection and Prevention. S94, 2004.

    Carragher, N.O. and Frame, M.C. Focal adhesion and actin dynamics: a place
    wherekinases and proteases meet to promote invasion. Trends Cell Biol.
    14: 241-249, 2004.

    Danen, E.H., Sonneveld, P., Sonnenberg,A. and Yamada, K.M. Dual
    stimulation of Ras/mitogen-activated protein kinase and RhoA by cell
    adhesion to fibronectin supports growth factor-stimulated cell cycle
    progression. J Cell Biol. 151: 1413-1422, 2000.

    Nemer, El., Gane, W., Colin, P., Bony, Y.V., Rahuel, C., Galacteros, F.,
    Cartron, J.P. and Le Van Kim, C. The Lutheran blood group glycoproteins, the
    erythroid receptors for laminin, are adhesion molecules. J Biol Chem.
    273: 16686-16693, 1998.

    Nemer, El., Gane, P., Colin, Y., D'Ambrosio I., Callebaut, A.M. Cartron, J.P.
    and Van Kim, C.L. Characterization of the laminin binding domains of the
    Lutheran blood group glycoprotein. J Biol Chem. 276: 23757-23762, 2001.

    Frame, S. and Balmain, A. Integration of positive and negative growth
    signals during ras pathway activation in vivo. Curr Opin Genet Dev.
    10: 106-113, 2000.

    Feig, L.A. and Buchsbaum, R.J. Cell signaling: life or death decisions of ras
    proteins, Curr Biol. 12: R259-261, 2002.

    Franke, T.F., Hornik, C.P., Segev, L., Shostak, G.A. and Sugimoto, C.
    PI3K/Akt and apoptosis: size matters. Oncogene. 22: 8983-8998, 2003.

    Giancotti, F.G. and Ruoslahti, E. Integrin signaling. Science. 285:
    1028-1032, 1999.

    Gu, J., Sumida, Y., Sanzen, N. and Sekiguchi, K. Laminin-10/11 and
    fibronectin differentially regulate integrin-dependent Rho and Rac activation
    via p130(Cas)-CrkII-DOCK180 pathway. J Biol Chem. 276: 27090-27097,
    2001.

    Hall, A. Small GTP-binding proteins and the regulation of the actin
    cytoskeleton. Annu Rev Cell Biol. 10: 31-54, 1994.

    Hunter, T. Oncoprotein networks. Cell. 88: 333-346, 1997.

    Hall, A. Rho GTPases and the actin cytoskeleton. Science. 279: 509-514,
    1998.

    Kasid, A., Lippman, M.E., Papageorge, A.G., Lowy, D.R. and Gelmann, E.P.
    Transfection of v-rasH DNA into MCF-7 human breast cancer cells bypasses
    dependence on estrogen for tumorigenicity. Science. 228: 725-728, 1985.

    Kozma, R., Sarner, S., Ahmed, S. and Lim,L. Rho family GTPases and
    neuronal growth cone remodelling: relationship between increased
    complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse
    induced by RhoA and lysophosphatidic acid. Mol Cell Biol. 17: 1201-1211,
    1997.

    Kikkawa, Y., Sanzen, N. and Sekiguchi, K. Isolation and characterization of
    laminin-10/11 secreted by human lung carcinoma cells. laminin-10/11
    mediates cell adhesion through integrin alpha3 beta1. J Biol Chem.
    273: 15854-15859, 1998.

    Kaibuchi, K., Kuroda, S. and Amano, M. Regulation of the cytoskeleton and
    cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev
    Biochem. 68: 459-486, 1999.

    Krishnamoorthy, B., Narayanan, K., Miyamoto, S. and Balakrishnan, A.
    Epithelial cells release proinflammatory cytokines and undergo
    c-Myc-induced apoptosis on exposure to filarial parasitic sheath protein-Bcl2
    mediates rescue by activating c-H-Ras. In Vitro Cell Dev Biol Anim.
    36:532-538, 2000.

    Kikkawa, Y., Moulson, C.L., Virtanen, I. and Miner, J.H. Identification of the binding site for the Lutheran blood group glycoprotein on laminin alpha 5 through expression of chimeric laminin chains in vivo. J Biol Chem. 277:
    44864-44869, 2002.

    Kinbara, K., Goldfinger, L.E., Hansen, M., Chou, F.L. and Ginsberg, M.H.
    Ras GTPases: integrins' friends or foes? Nat Rev Mol Cell Biol, 4: 767-776,
    2003.

    Lehmann, J.M., Riethmuller, G. and Johnson, J.P. MUC18, a marker of tumor
    progression in human melanoma, shows sequence similarity to the neural cell
    adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci
    U S A. 86: 9891-9895, 1989.

    Leeuwen, F.N., Kain, H.E., Kammen, R.A., Michiels, F., Kranenburg, O.W.
    and Collard, J.G. The guanine nucleotide exchange factor Tiam1 affects
    neuronal morphology; opposing roles for the small GTPases Rac and Rho. J
    CellBiol. 139: 797-807, 1997.

    Lee, S.P., Cunningham, M.L., Hines, P.C., Joneckis, C.C., Orringer, E.P. and
    Parise, L.V. Sickle cell adhesion to laminin: potential role for the alpha5
    chain. Blood. 92: 2951-2958, 1998.

    Moulson, C.L., Li, C. and Miner, J.H. Localization of Lutheran, a novel
    laminin receptor, in normal, knockout, and transgenic mice suggests an
    interaction with laminin alpha5 in vivo. Dev Dyn. 222: 101-114, 2001.

    Malumbres, M., and Barbacid, M. RAS oncogenes: the first 30 years. Nat
    Rev Cancer. 3: 459-465, 2003.

    Parsons, S.F., Mallinson, G., Daniels, G.L., Green, C.A., Smythe, J.S. and
    Anstee, D.J. Use of domain-deletion mutants to locate Lutheran blood group
    antigens to each of the five immunoglobulin superfamily domains of the
    Lutheran glycoprotein: elucidation of the molecular basis of the Lu(a)/Lu(b)
    and the Au(a)/Au(b) polymorphisms. Blood. 89: 4219-4225, 1997.

    Parsons, S.F., Lee, G., Spring, F.A., Willig, T.N., Peters, L.L., Gimm, J.A.,
    Tanner,M.J., Mohandas, N., Anstee, D.J. and Chasis, J.A. Lutheran blood
    group glycoprotein and its newly characterized mouse homologue specifically
    bind alpha5 chain-containing human laminin with high affinity. Blood.
    97: 312-320, 2001.

    Pickett, C.A. and Gutierrez-Hartmann, A. Epidermal growth factor and Ras
    regulate geneexpression in GH4 pituitary cells by separate, antagonistic signal
    transduction pathways. Mol Cell Biol. 15: 6777-6784, 1995.

    Ren, X.D., Kiosses, W.B. and Schwartz, M.A. Regulation of the small
    GTP-binding protein Rho by cell adhesion and the cytoskeleton. Embo J.
    18: 578-585, 1999.

    Ridley, A.J. Rho family proteins: coordinating cell responses. Trends Cell
    Biol. 11: 471-477, 2001a.

    Ridley, A.J. Rho GTPases and cell migration. J Cell Sci. 114: 2713-22,
    2001b.

    Roovers, K. and Assoian, R.K. Effects of rho kinase and actin stress fibers on
    sustained extracellular signal-regulated kinase activity and activation of G(1)
    phase cyclin-dependent kinases. Mol Cell Biol. 23: 4283-4294, 2003.

    Sommers, C.L., Papageorge, A., Wilding, G. and Gelmann, E.P. Growth
    properties and tumorigenesis of MCF-7 cells transfected with isogenic
    mutants of rasH, Cancer Res. 50: 67-71, 1990.

    Sander, E.E., van Delft, S., ten Klooster, J.P., Reid, T. van der Kammen, R.A.
    Michiels, F. and Collard, J.G. Matrix-dependent Tiam1/Rac signaling in
    epithelial cells promotes either cell-cell adhesion or cell migration and is
    regulated by phosphatidylinositol 3-kinase. J Cell Biol. 143: 1385-1398,
    1998.

    Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A. and
    Collard, J.G. Rac downregulates Rho activity: reciprocal balance between
    both GTPases determines cellular morphology and migratory behavior. J
    Cell Biol. 147: 1009-1022, 1999.

    Schon, M., Klein, C.E., Hogenkamp, V., Kaufmann, R., Wienrich, B.G. and
    Schon, M.P. Basal-cell adhesion molecule (B-CAM) is induced in epithelial
    skin tumors and inflammatory epidermis, and is expressed at cell-cell and
    cell-substrate contact sites. J Invest Dermatol. 115: 1047-1053, 2000.

    Sahai, E., Olson, M.F. and Marshall, C.J. Cross-talk between Ras and Rho
    signalling pathways in transformation favours proliferation and increased
    motility. Embo J. 20: 755-766, 2001.

    Sahai, E. and Marshall, C.J. Differing modes of tumour cell invasion have
    distinct requirements for Rho/ROCK signalling and extracellular proteolysis.
    Nat Cell Biol. 5: 711-719, 2003.

    Tsuji, T., Ishizaki, T., Okamoto, M., Higashida, C., Kimura, K., Furuyashiki,
    Y., Arakawa, T., Birge, R., Nakamoto, B., Hirai, T. H. and Narumiya, S.
    ROCK and mDia1 antagonize in Rho-dependent Rac activation in Swiss 3T3
    fibroblasts. J Cell Biol. 157: 819-830, 2002.

    Udani, M., Zen, Q., Cottman, M., Leonard, N., Jefferson, S., Daymont, C.,
    Truskey,G. and Telen, M.J. Basal cell adhesion molecule/lutheran protein. The
    receptor critical for sickle cell adhesion to laminin. J Clin Invest.
    101: 2550-2558, 1998.

    Vial, E., Sahai, E. and Marshall, C.J. ERK-MAPK signaling coordinately
    regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell.
    4: 67-79, 2003.

    Webb, C.P., Van Aelst, L., Wigler, M.H. and Woude, G.F. Signaling pathways
    in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A.
    95: 8773-8778, 1998.

    Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. and Narumiya, S. Cooperation
    between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell
    Biol. 1: 136-143, 1999.

    Zen, Q., Cottman, M., Truskey, G., Fraser R. and Telen, M.J. Critical factors
    in basal cell adhesion molecule/lutheran-mediated adhesion to laminin. J
    Biol Chem. 274: 728-734, 1999.

    下載圖示 校內:2009-08-03公開
    校外:2009-08-03公開
    QR CODE