| 研究生: |
高尚成 Kao, Shang-Cheng |
|---|---|
| 論文名稱: |
以新型微流體晶片製作雙重乳化PLGA複合藥物微球進行藥物釋放控制 Production of double emulsion PLGA based microparticles using newest microfluidics chip for the controlled drug release |
| 指導教授: |
葉思沂
Yeh, Szu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 微流體晶片 、PLGA複合藥物微球 、藥物釋放 、共傳輸 |
| 外文關鍵詞: | Microfluidic chip, PLGA multi-drug microparticles, Drug release, Co-delivering |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,在現今的年代中,因為生活及環境的改變,人們也患有越來越多的疾病,造成人們每年在醫療上的支出持續地增長,而在這些疾病當中,癌症是令人們非常頭痛的疾病之一,因此本篇研究決定利用新型微流體晶片來製作雙重乳化PLGA複合藥物微球,並能有一次性完成及尺寸均勻的效果,最後利用複合藥物微球進行階段性及長效性的雙重藥物釋放。
本研究經由改善研究團隊中的微流體晶片設計來達成研究目的,第一階段流道採用原研究團隊所設計之菱形柱狀陣列晶片來進行第一次乳化,第二階段流道則採用突擴型流體聚焦結構來進行第二次的乳化,在實驗的乳化過程中,僅改變第一階段的連續相與分散相中所含之藥物量,藉以製作出包覆不同藥物及藥物濃度之藥物微球,隨後比較不同藥物微球間的差異,其中包括尺寸、載藥率、包覆率及其藥物釋放之情形。
由實驗結果可得知,藥物濃度對藥物釋放的影響上,薑黃素會受到藥物濃度影響而產生不同的釋放趨勢,而阿黴素則較不易受到藥物濃度的影響;複合藥物微球相較於單藥物微球,其可有效地降低藥物的初始爆發值,並使整體的釋放曲線更為緩和。未來團隊若能解決薑黃素初始爆發值的問題,以及能使複合藥物微球以最佳比例釋放藥物的話,相信能在生醫領域上有巨大的貢獻。
In this study, we fabricated the composite PLGA microparticles for curcumin and doxorubicin co-delivering. We utilized the microfluidic double emulsion device which was published for our group. This microfluidc device comprised two different parts, the micromixer with diamond-shaped pillar arrays and flow-focusing droplet generator. In the emulsification process of the experiment, we only change the concentrations of the doxorubicin and curcumin in dispersed phase and continuous phase during first emulsion to produce microspheres with different drug contents and drug release behavior. We discussed the differences between these microspheres, including size, drug loading capacity, encapsulation efficiency and drug release. The experimental data showed that the release curve of the curcumin would be affected by different concentrations of the drug, and then, the release of the curcumin would perform the different release curve. On the contrary, the release of doxorubicin always had the same trend of release with many kinds of changes in drug concentrations. The multi-drug microspheres compared to the single-drug microspheres, having a significantly effect to decrease the burst release, and letting the whole release curve smoother and slower. On this basis, we developed a composited PLGA particles which can achieve the co-delivery of curcumin and doxorubicin and could be helpful in the clinical cancer treatment in the future.
1. Mylonaki, I., et al., Imaging the porous structure in the core of degrading PLGA microparticles: the effect of molecular weight. Journal of controlled release, 2018. 286: p. 231-239.
2. Feng, S., et al., Effects of drug and polymer molecular weight on drug release from PLGA‐m PEG microspheres. Journal of Applied Polymer Science, 2015. 132(6).
3. Yang, Y.-Y., T.-S. Chung, and N.P. Ng, Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 2001. 22(3): p. 231-241.
4. Wu, J., et al., Fabrication and characterization of monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells for controlled drug release. Acta biomaterialia, 2013. 9(7): p. 7410-7419.
5. Jeffery, H., S. Davis, and D. O'hagan, The preparation and characterisation of poly (lactide-co-glycolide) microparticles. I: Oil-in-water emulsion solvent evaporation. International Journal of Pharmaceutics, 1991. 77(2-3): p. 169-175.
6. Blaker, J.J., J.C. Knowles, and R.M. Day, Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta biomaterialia, 2008. 4(2): p. 264-272.
7. Zhao, C., et al., Preparation of DNA-loaded polysulfone microspheres by liquid–liquid phase separation and its functional utilization. Journal of colloid and interface science, 2004. 275(2): p. 470-476.
8. He, P., S.S. Davis, and L. Illum, Chitosan microspheres prepared by spray drying. International journal of pharmaceutics, 1999. 187(1): p. 53-65.
9. Vehring, R., W.R. Foss, and D. Lechuga-Ballesteros, Particle formation in spray drying. Journal of Aerosol Science, 2007. 38(7): p. 728-746.
10. Thomasin, C., et al., A Contribution to Overcoming the Problem of Residual Solvents in Biodegradable Microspheres, Prepared by. Eur. J. Pharm. Biopharm, 1996. 42: p. 1.
11. Johansen, P., H.P. Merkle, and B. Gander, Technological considerations related to the up-scaling of protein microencapsulation by spray-drying. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50(3): p. 413-417.
12. Keohane, K., et al., Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles. International journal of pharmaceutics, 2014. 467(1-2): p. 60-69.
13. Xu, Q., et al., Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow‐focusing device for controlled drug delivery. Small, 2009. 5(13): p. 1575-1581.
14. Li, D., et al., Monodisperse water-in-oil-in-water emulsions generation for synthesising alginate hydrogel microspheres via locally hydrophobic modification to PMMA microchannels. Sensors and Actuators B: Chemical, 2018. 255: p. 1048-1056.
15. Nunes, J., et al., Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. Journal of physics D: Applied physics, 2013. 46(11): p. 114002.
16. Christopher, G.F. and S.L. Anna, Microfluidic methods for generating continuous droplet streams. Journal of Physics D: Applied Physics, 2007. 40(19): p. R319.
17. Kim, T.K., et al., Gas foamed open porous biodegradable polymeric microspheres. Biomaterials, 2006. 27(2): p. 152-159.
18. Siepmann, J., et al., How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromolecules, 2005. 6(4): p. 2312-2319.
19. Klose, D., et al., How porosity and size affect the drug release mechanisms from PLGA-based microparticles. International journal of pharmaceutics, 2006. 314(2): p. 198-206.
20. Singal, P.K. and N. Iliskovic, Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 1998. 339(13): p. 900-905.
21. Chatterjee, K., et al., Doxorubicin cardiomyopathy. Cardiology, 2010. 115(2): p. 155-162.
22. Von Hoff, D.D., et al., Risk factors for doxorubicin-lnduced congestive heart failure. Annals of internal medicine, 1979. 91(5): p. 710-717.
23. Joshi, G., et al., Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free radical research, 2005. 39(11): p. 1147-1154.
24. Pivari, F., et al., Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients, 2019. 11(8): p. 1837.
25. Sarraf, P., et al., Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: a systematic review and dose-response meta-analysis of randomized controlled trials. Nutrition Research, 2019. 69: p. 1-8.
26. Thamlikitkul, V., et al., Randomized double blind study of Curcuma domestica Val. for dyspepsia. J Med Assoc Thai, 1989. 72(11): p. 613-20.
27. Panda, A.K., et al., New insights into therapeutic activity and anticancer properties of curcumin. Journal of experimental pharmacology, 2017. 9: p. 31.
28. Shahani, K. and J. Panyam, Highly loaded, sustained-release microparticles of curcumin for chemoprevention. Journal of pharmaceutical sciences, 2011. 100(7): p. 2599-2609.
29. El-Sherbiny, I.M. and H.D. Smyth, Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Molecular pharmaceutics, 2012. 9(2): p. 269-280.
30. Yang, K.-Y., et al., Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. Journal of chromatography B, 2007. 853(1-2): p. 183-189.
31. Batra, H., S. Pawar, and D. Bahl, Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacological research, 2019. 139: p. 91-105.
32. Zhang, J., et al., pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta biomaterialia, 2017. 58: p. 349-364.
33. Baghbani, F. and F. Moztarzadeh, Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets. Colloids and Surfaces B: Biointerfaces, 2017. 153: p. 132-140.
34. Gasmi, H., et al., Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. International journal of pharmaceutics, 2016. 514(1): p. 189-199.
35. Langer, R., Polymer-controlled drug delivery systems. Accounts of Chemical Research, 1993. 26(10): p. 537-542.
36. von Burkersroda, F., L. Schedl, and A. Göpferich, Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002. 23(21): p. 4221-4231.
37. Faisant, N., J. Siepmann, and J. Benoit, PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. European Journal of Pharmaceutical Sciences, 2002. 15(4): p. 355-366.
38. Tripathi, A., R. Gupta, and S.A. Saraf, PLGA nanoparticles of anti tubercular drug: drug loading and release studies of a water in-soluble drug. Int J Pharm Tech Res, 2010. 2(3): p. 2116-23.
39. Lin, R., L.S. Ng, and C.-H. Wang, In vitro study of anticancer drug doxorubicin in PLGA-based microparticles. Biomaterials, 2005. 26(21): p. 4476-4485.
40. Gao, C., et al., pH-Responsive prodrug nanoparticles based on a sodium alginate derivative for selective co-release of doxorubicin and curcumin into tumor cells. Nanoscale, 2017. 9(34): p. 12533-12542.
41. 宋俊彥, 雙重乳化微流體晶片設計, in 航空太空工程學系. 2020, 國立成功大學: 台南市.
42. Microchem, K., SU-8 3000 Permanent Epoxy Negative Photoresist. Data Sheet, 2006.
校內:2024-07-31公開