| 研究生: |
蘇梓靖 Su, Tzu-Ching |
|---|---|
| 論文名稱: |
建築動態耗能密度指標之研究 The Building Dynamic Energy Use Intensity Index |
| 指導教授: |
林憲德
Lin, Hsien-Te |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 建築耗能密度 、建築能源評估 、建築營運條件 、建築節能 |
| 外文關鍵詞: | Energy Use Intensity (EUI), Building Energy Evaluation, Building Operation Condition, Energy Conservation |
| 相關次數: | 點閱:146 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著節能減碳議題日益受到重視,建築產業的節能,特別是建築日常使用之節能與能源規範亦更加重要。欲達到有效的建築耗能控制,則需要一套能準確呈現出「建築節能熱點」的建築能源評估系統與指標,方能對症下藥,擬訂正確的節能減碳對策。
本研究首先著眼於過去台灣及國際間建築耗能統計與建築耗能指標之種種問題,包含:建築空間機能複雜且普遍混合使用;同類型建築營運時間不一、內部空間組成不一且設備量差異甚大;建築增改建、面積、使用機能改變;建築營業生意、來客率、出租率等變因不明等問題。這些問題使得過去以建築分類統計的EUI指標失去其準確性、代表性,而必須透過建築個案與耗能指標之間「營運條件一致化」與「空間組成一致化」兩大策略,方可修正上述不公平之處。
延續上述兩大策略,本研究發展出足以網羅台灣坊間建築空間類型的37種基本空間及其「標準營運條件」與「建築外殼性能與設備性能基準」,進而計算得此37種基本空間之EUI指標。接著,本研究根據此37種基本空間之面積比例與EUI指標,以面積加權平均的方式,組合成為無限多種建築EUI指標,完成了台灣建築動態EUI指標。
本研究接著利用四棟混用型建築,以可靠的建築能源模擬軟體eQUEST程式模擬建築耗能,再計算其動態EUI指標,並比較台灣過去建築EUI統計數值,最終確定了本動態EUI指標能反映建築空間變化造成的耗能變異,並能大致不差呈現出台灣各種建築耗能之概況。
本動態EUI指標之特色有二:其一,每一棟建築個案所面對的建築EUI指標皆根據其組成空間比例「量身訂做」而成,充分發揮「自己與自己比」的公平精神;其二,標準化建築營運條件,消除營運差異,使建築個案EUI值與其EUI指標之差,能完全呈現出建築個案節能設計之優劣。
Energy conservation codes for buildings are extremely crucial because people pay an unprecedented level of attention to energy conservation and carbon reduction. To control building energy use efficiently, a building energy evaluation system and an energy use intensity (EUI) index that can accurately identify the hot spot of the energy conservation of a building are necessary.
In this study, we initially focused on the problems encountered when building energy-use statistics and EUI indices have been used. These problems include contemporary buildings becoming increasingly complex and multipurpose compared with buildings constructed in the past; similar buildings are now composed of various space components, and operated with different schedules; and the rental rates and occupancies of similar buildings are indeterminate. Therefore, previous EUI indices have been inaccurate, unfair, and ineffective for determining the energy use characteristics of buildings that exhibit limitless space combinations. To modify such unfair situations, this study addressed that the EUI indices and every building's EUI should be compared under the same operation conditions and space components.
Subsequently, we collated 37 basic areas and their standard operation conditions, including operational hours, occupancies, lighting power requirements, and electric appliance power densities, according to the space components and energy-use features of commercial buildings in Taiwan and established the EUI indices of these areas. This study proposes a dynamic EUI index calculation that does not define the EUI index according to building type but separates a building into 37 basic areas at most, and then combines the EUI indices of these basic areas into a unique EUI index according to the area proportions.
Thereafter, this study used 4 normal buildings as examples, simulated their energy uses by using an energy simulation program, eQUEST, and calculated their dynamic EUI indices. The values of the dynamic EUI indices are almost close to the values of the simulated and statistical EUIs of the 4 buildings, respectively. Therefore, this study confirmed that the dynamic EUI index calculation method can be used for expressing the energy use variation of multiple building space components and is suitable for presenting the energy use conditions of buildings in Taiwan.
This dynamic EUI index calculation method is superior to previous EUI index because of 2 features: First, an EUI index is calculated for each building by using its own space components; thus, it is customized and comparable. Second, using standard operation conditions eliminates the energy use difference derived from operations, thereby enabling the EUI difference between a building and its EUI index to directly represent the benefits of the energy conservation design of a building.
中文文獻
1. 內政部建築研究所,「綠建築解說與評估手冊2010年版」,內政部建築研究所,2010
2. 行政院節能減碳推動會秘書處,「節能減碳國家總計畫-核定本」,行政院,2010
3. 李東翰,「百貨商場耗能特性之研究-以百貨公司與購物中心為例」,國立成功大學碩士論文,2012
4. 李文興、李魁鵬,「建立政府機關學校用電指標評估模式計畫期末報告」,綠色生產力基金會/經濟部能源局委託研究,2011
5. 林啟發,「亞洲地區辦公建築外殼節能計劃」,國立成功大學碩士論文,2006
6. 林憲德,「綠色建築」,詹氏書局,2006
7. 林憲德,「人居熱環境」,詹氏書局,2009
8. 卓政顥,「便利商店耗能及使用特性分析」,朝陽科技大學碩士論文,2013
9. 洪晨淯,「台灣便利商店設備耗能推估之研究」,朝陽科技大學碩士論文,2013
10. 財團法人 成大研究發展基金會,「歐盟能源效能與台灣建築節能法令體系之比較研析計畫」,行政院環境保護署,2009
11. 財團法人 台灣綠色生產力基金會,「非製造業能源查核年報2006」,台灣綠色生產力基金會,2006
12. 財團法人 台灣綠色生產力基金會,「非製造業能源查核年報2006」,台灣綠色生產力基金會,2010
13. 財團法人 台灣綠色生產力基金會,「非製造業能源查核年報2006」,台灣綠色生產力基金會,2011
14. 財團法人 台灣綠色生產力基金會,「非製造業能源查核年報2006」,台灣綠色生產力基金會,2012
15. 陳介慧,「建築用電密度標準之研究」,國立成功大學碩士論文,2009
16. 陳雍雍,「醫院建築耗能特性之研究」,國立成功大學碩士論文,2012
17. 黃國倉,「辦公建築生命週期節能與二氧化碳減量評估之研究」,國立成功大學博士論文,2006
外文文獻
1. ASHRAE, ASHRAE Standard 90.1-2007, ASHRAE, 2007.
2. ASHRAE Building Energy Labeling Program, Building Energy Quotient- Promoting the Value of Energy Efficiency in the Real Estate Market (Implementation Report), ASHRAE, 2009.
3. William J. Keese, etc., Nonresidential Alternative Calculation Method (ACM) Approval Manual for the 2005 Building Energy Efficiency Standards For Residential And Nonresidential Buildings, California Energy Commission, 2005
4. Department of Building National University of Singapore, "Technical Guide Towards Energy Smart Office," National University of Singapore, 2008.
5. Department of Building National University of Singapore, "Technical Guide Towards Energy Smart Hotel," National University of Singapore, 2008.
6. Department of Building National University of Singapore, "Technical Guide Towards Energy Smart Retail Mall," National University of Singapore, 2008.
7. Hans-Dieter Hegner, "Energieausweise fur die Praxis (Broschiert)," frauhofer Irb Verlag, pp.256-262, 2008.
8. Harry Bruhns etc., "CIBSE REVIEW OF ENERGY BENCHMARKS FOR DISPLAY ENERGY CERTIFICATES- Analysis of DEC results to date," CIBSE Benchmarks Steering Committee, pp.14-15, 2011.
9. Lee Siew Eanga, Rajagopalan Priyadarsinib, "Building energy efficiency labeling programme in Singapore," Energy Policy, Vol. 36, PP.3982-3992, 2008.
10.Tzu-Ching Su, Hsien-Te Lin, Electricity Consumption Benchmark and Ranking System for Office Buildings in Taiwan, Applied Mechanics and Materials, Vol.71-78, pp.2352-2356, 2011.
11. William Chung, "Review of building energy-use performance benchmarking methodologies," Applied Energy, Vol. 88, Issue 5, PP. 1470–1479, 2011.
網路文獻
1. Energy Star " Portfolio Manager Overview," online available at http://www.energystar.gov/index.cfm?c=evaluate_performance.bus_portfoliomanager
2. Energy Star "Guidance for Benchmarking Mixed-Use Properties in Portfolio Manager," online available at http://www.energystar.gov/index.cfm?c=eligibility.bus_ portfoliomanager_eligibility_mixed
3. "Energy consumption in the UK," online available at https://www.gov.uk/government/publications/energy-consumption-in-the-uk
4. IPCC," Climate Change 2007: Synthesis Report," online availibale at
http://www.ipcc.ch/publications_and_data/ar4/syr/en/main.html
5. U.S Energy Information Administration " Commercial Buildings Energy Consumption Survey (CBECS) " online available at http://www.eia.gov/consumption/commercial/index.cfm
6. 財團法人綠色生產力基金會 http://www.ecct.org.tw/
7. 經濟部能源局 http://www.tabc.org.tw