簡易檢索 / 詳目顯示

研究生: 汪德彥
Wang, Te-Yen
論文名稱: 船頭震波對太陽風粒子(H+, He2+, O+)的非均向性加熱
Anisotropic Heating of Protons, He2+, O+ Ions by the Earth's Bow shock
指導教授: 李羅權
Lee, Lou-Chuang
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 非均向性加熱船頭震波
外文關鍵詞: anisotropic heating, Bow shock
相關次數: 點閱:108下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   透過ISEE-1衛星上Hot Plasma Composition Experiment(HPCE)儀器的電漿量測與AMPTE衛星的Charge Composition Explorer磁場觀測,我們發現太陽風粒子在地球船頭波前方與進入磁鞘區後的特性顯著不同。統計HPCE資料顯示經過船頭波加熱後,磁鞘區粒子的非均向性(anisotropy)溫度分布為:(1) He2+與H+的非均向性(T/T||)比值(T/T||(He2+))/(T/T||(H+))=1.240.12;(2)平行磁場方向的熱速度比為Vth||(He2+)/Vth||(H+)=0.890.09;(3) He2+離子與H+離子的溫度(T=(2T+T||)/3)比值T(He2+)/T(H+)=3.770.63,略小於其質量比;(4)垂直磁場的溫度分量比值T(He2+)/T(H+)=3.950.68。我們認為這些性質主要是緣於船頭震波直接對粒子的加熱作用。本文應用混合粒子碼模擬,以實際太陽風(96% H+ and 4% He2+)的粒子組成及測試的O+粒子,探討高馬赫數船頭(MA=4~10)震波對H+離子與重離子(He2+, O+)的加熱。
      在船頭波前方的太陽風粒子具有相同熱速度的狀態下,我們以(MA=8, =1, =80)之上游參數來模擬快震波加熱,分析得出下列結果: (1)He2+與H+的非均向比值(T/T||(He2+))/(T/T||(H+))=1.31 0.44;(2) Vth||(He2+)/Vth||(H+) =0.860.10;(3)T(He2+)/T(H+)~3.53;(4) T(He2+)/T(H+)~3.71。進一步累計MA=4, 6, 8, 10與=50, 60, 70, 80各種不同強度震波的統計結果顯示﹕(1)He2+與H+的非均向比值(T/T||(He2+))/(T/T||(H+))=1.200.35;(2)Vth||(He2+)/Vth||(H+)=0.920.09;(3)T(He2+)/T(H+)~3.74;(4)T(He2+)/T(H+)~3.89。這些模擬數據皆與HPCE觀測值相當吻合,我們的研究顯示船頭快震波的直接加熱可有效地改變太陽風粒子的溫度分布特性。

      ISEE-1/HPCE and AMPTE/CCE observations in 1984 showed that the thermal temperatures of protons (H+) and helium ions (He2+) are anisotropic in the magnetosheath. Statistical analysis shows the anisotropy (T/T||) and temperature ratio between protons (H+) and helium ions (He2+) are: (1) the anisotropy ratio is (T/T||(He2+))/(T/T||(H+))=1.240.12; (2) the ratio of parallel thermal velocities is Vth||(He2+)/Vth||(H+)=0.890.09; (3) temperature (T=(2T+T||)/3) ratio is T(He2+)/T(H+)=3.770.63; (4) perpendicular temperature ratio, T(He2+)/T(H+)=3.950.68, is very close to the mass ratio. We suggest these properties are mainly resulted from the particle heating by Earth’s bow shock, where other post heating processes behind bow shock (i.e., in the magnetosheath) can be neglected. We applied hybrid simulations to study the anisotropic heating of H+, He2+ and O+ ions by Earth’s bow shock with various value of Alfvén Mach number MA=4~10. In simulations, the particle distributions consist of realistic solar wind with 96% H+ and 4% He2+, and additional test O+ particles which do not feedback to the variations of density and current in the simulation system.
      We first set the typical parameters upstream of bow shock with MA=8, =1, =80. We assume H+ and He2+ ions in the upstream of shock have same thermal velocities. The simulation results show that (1) (T/T||(He2+))/(T/T||(H+))=1.310.44; (2) Vth||(He2+)/Vth||(H+)=0.860.10; (3) T(He2+)/T(H+)~3.53; (4) T(He2+)/T(H+)~3.71. In spite of this single case analysis, we also simulate cases with different Mach numbers (MA=4, 6, 8, 10), plasma betas (=0.5, 1, 1.5) and shock normal angles (=50, 60, 70, 80). The average values obtained from simulations show: (1) (T/T||(He2+))/(T/T||(H+))=1.200.35; (2) Vth||(He2+)/Vth||(H+) =0.920.09; (3) T(He2+)/T(H+)~3.74; (4) T(He2+)/T(H+)~3.89. It is found that the average values are closer to the spacecraft measurements than one typical case. Our study shows that the solar wind temperature anisotropy can be effectively generated by the Earth’s bow shock heating. The shock heating mechanism can explain the temperature observations for H+ and He2+ ions in the magnetosheath.

    目錄 摘要 致謝 本文目錄 圖表目錄 第一章 簡介 1 1.1地球磁層系統 1 1.2 船頭震波與磁鞘區的太陽風粒子 3 1.3 衛星觀測:磁鞘區H+與He2+粒子的溫度分布 4 1.3.1 粒子與磁場觀測儀器:HPCE與CCE 5 1.3.2 觀測過程 6 1.3.3 觀測結果 7 1.4研究內容 9 第二章 MHD基本方程與不連續結構 10 2.1 MHD基本方程 10 2.2 Jump Conditions 13 2.3 快震波的性質 19 第三章 數值模擬 21 3.1 一維混合粒子模型(1-D Hybrid code) 21 3.2初始的背景參數設定 24 3.3 模擬結果 26 3.3.1 上游粒子(H+, He2+, O+)有相同熱速度 26 3.3.2 上游粒子(H+, He2+, O+)有相同溫度 33 3.4 討論 35 第四章 結論 37 4.1 ISEE-1/AMPTE之衛星觀測值 37 4.2 兩種模擬方式之比較 38 4.2.1 上游粒子具有相同熱速度(個案A) 38 4.2.2上游粒子具有相同溫度(個案C) 39 4.3 上游粒子具有相同熱速度時的累計個案 40 圖表 參考文獻

    參考文獻

    Axford, W. I., The interaction between the solar wind and the earth’s magnetosphere, J. Geophys. Res., 67, 3791, 1962.

    Birdsall, C. K., and A. B. Langdon, Plasma Physics via Computer Simulation, pp. 19-22, 1985.

    Chen, G. L., and N. F. Numerical simulation of the interaction with charged particles with oblique magnetohyrodynamic shocks, Ph.D. thesis, Univ. of Kansas, Lawrence, 1975.

    Freeman, J. W., The morphology of the electron distribution in the outer radiation zone near the magnetospheric boundary as observed by Explorer 12. J. Geophys. Res., 69, 1691, 1964.

    Fuselier, S. A., Schmidt, W. K. H., H+ and He2+ heating at the earth’s bow shock, J. Geophys. Res., 99, No. A6, 11539, 1994.

    Fuselier, S. A., Schmidt, W. K. H., Solar wind He2+ ring-beam distributions downstream from the earth’s bow shock, J. Geophys. Res., 102, No. A6, 11273, 1997.

    Goodrich, C. C., and Scudder, J. D., J. Geophys. Res., 96, 9801, 1984.

    Kellog, P. J., Flow of plasma around the earth, J. Geophys. Res., 67, 3805, 1962.

    Landau, L. D., and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960.

    L. C. Lee, and B. H. Wu, Heating and acceleration of protons and minor ions by fast shocks in the solar corona, AstroPhysical J. 535. 1014, 2000.

    M. E. Mandt, Effects of electron pressure on quasi-parallel collisionless shocks results of numerical simulation, M.S. thesis, 1984.

    Ness, N. F., C. S. Scearce and J. B. Seek, Initial results of the IMP-1 magnetic field experiments, J. Geophys. Res., 69, 3531, 1964.

    Parker, E. N., A quasi-linear model of plasma shock structure in a longitudinal magnetic field, J.Nucl. Energy, C2, 146, 1961.

    Zhigulev, V. N., On the phenomema of magnetic detachment of the flow of a conduction medium, Soviet Phys. Doklady, 4, 514, 1959.

    Parks, G. K. Physics of Space Plasmas: An Introduction , Addison-Wesley, Redwood City, pp. 8; 418-419

    吳伯翰, 震波與不連續結構之交互作用, 博士論文, 1996.
    林承忠, 快震波對磁層中重離子之加速, 碩士論文, 1997
    涂傳詒, 日地空間物理學, 科學出版社, 北京市, pp. 306-310, 1988.

    下載圖示 校內:立即公開
    校外:2004-07-20公開
    QR CODE