| 研究生: | 林鈺珊 Lin, Yu-Shan | 
|---|---|
| 論文名稱: | 發展可行性的口服疫苗預防困難梭狀芽孢桿菌的感染 Development of an orally available vaccine for the prevention of Clostridium difficile infections | 
| 指導教授: | 黃一修 Huang, I-Hsiu | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology | 
| 論文出版年: | 2018 | 
| 畢業學年度: | 106 | 
| 語文別: | 英文 | 
| 論文頁數: | 108 | 
| 中文關鍵詞: | 困難梭狀芽孢桿菌 、毒素B 、多肽聚合物 、疫苗 | 
| 外文關鍵詞: | Clostridium difficile, toxin B, polypeptide-based polymer, vaccine | 
| 相關次數: | 點閱:41 下載:0 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
困難梭狀芽孢桿菌是一個革蘭氏陽性會形成孢子的厭氧菌,並在全世界造成抗生素相關腹瀉。一旦感染困難梭狀芽孢桿菌其症狀包括腹瀉、偽膜性腸炎和毒性巨腸症。感染的風險包括抗生素的使用和長期的住院治療。最常透過口服萬古黴素、硝基甲嘧唑乙醇和非達黴素這些抗生素來治療困難梭狀芽孢桿菌的感染。然而,如此的治療會破壞腸道正常菌叢的定殖。再者,大約25-30%的病患會有復發現象的產生。因此發展一個有效的疫苗來預防困難梭狀芽孢桿菌的感染是需要的。困難梭狀芽孢桿菌主要的毒力因子為兩個糖基化毒素,毒素A和毒素B,因此這兩者常作為理想的目標來設計疫苗。在本篇研究中,我們建構了重組蛋白毒素B(rTcdB)包含毒素B的受體結合區域1852-2363殘基位置作為抗原。這個重組蛋白抗原會分別被由聚賴氨酸接枝吲哚和聚賴胺酸嵌段聚蘇胺酸所形成的具有生物降解性和pH值敏感性的多肽聚合物包裹進去。我們假設多肽聚合物可以作為一個佐劑和抗原傳遞系統來誘發粘膜免疫反應。透過使用老鼠模式,我們將會評估這些多肽聚合物疫苗在口服給予後所誘發的專一性抗體反應如何,還有是否能夠有效對抗困難梭狀芽孢桿菌的感染。從本篇結果指出口服含有重組毒素B的多肽聚合物疫苗,能夠誘發抗毒素B的專一性免疫球蛋白G和免疫球蛋白A抗體並能夠有效對抗困難梭狀芽孢桿菌的感染。
Clostridium difficile is a gram-positive, spore-forming anaerobic bacterium and is the leading cause of antibiotic associated diarrhea worldwide (AAD). Once infected with C. difficile, symptoms can include diarrhea, pseudomembranous colitis and toxic megacolon. Risk factors of infection include antibiotic usage, frequent hospitalization, aging, and proton pump inhibitor usage. The most common treatment for CDI involves oral antibiotic therapy using vancomycin, metronidazole, or fidaxomicin with success rate range from 64 to 82%. However, it is expensive and may disrupt intestinal microbiota. Approximately 25–30% of CDI patients will experience recurrence. Development of an effective vaccine for CDI is therefore desirable and necessary to prevent infection. The major virulence factor of C. difficile are the two glucosylating toxins, toxin A and B and are therefore ideal targets for vaccine development. In this study, we constructed a recombinant protein, rTcdB, consisted of residues 1852-2363 of the toxin B receptor binding domain as an antigen. The rTcdB antigen was encased in polypeptide-based polymer made up of poly(L-lysine)20-graft-Indo0.3 and poly(L-lysine)20-block-poly(L-threonine)40, which are biodegradable and pH-sensitive. We hypothesized that the polypeptide-based polymer could serve as an adjuvant and antigen delivery system to induce mucosal immunity. Using a mouse model, we evaluated the potential of the polymer- based vaccine in inducing antigen specific antibody responses after oral injection and protection against C. difficile infection. Our results indicated that oral vaccination with rTcdB polymer could induce specific anti-rTcdB IgG and IgA responses and conferred protection against C. difficile infection.
References
1.	Kyne L, Warny M, Qamar A, Kelly CP. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342(6):390-7 (2000).
2.	Lai P, Daear W, Lobenberg R, Prenner EJ. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf B Biointerfaces 118:154-63 (2014).
3.	Dallal RM, Harbrecht BG, Boujoukas AJ, Sirio CA, Farkas LM, Lee KK, et al. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg 235(3):363-72 (2002).
4.	Kuijper EJ, Coignard B, Tull P, difficile ESGfC, States EUM, European Centre for Disease P, et al. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 12 Suppl 6:2-18 (2006).
5.	Kuijper EJ, Barbut F, Brazier JS, Kleinkauf N, Eckmanns T, Lambert ML, et al. Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill 13(31) (2008).
6.	Pepin J, Valiquette L, Alary ME, Villemure P, Pelletier A, Forget K, et al. Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 171(5):466-72 (2004).
7.	Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med 173(22):2039-46 (2013).
8.	Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353(23):2442-9 (2005).
9.	McEllistrem MC, Carman RJ, Gerding DN, Genheimer CW, Zheng L. A hospital outbreak of Clostridium difficile disease associated with isolates carrying binary toxin genes. Clin Infect Dis 40(2):265-72 (2005).
10.	Curry SR, Marsh JW, Muto CA, O'Leary MM, Pasculle AW, Harrison LH. tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol 45(1):215-21 (2007).
11.	Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, et al. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47(9):1162-70 (2008).
12.	Alasmari F, Seiler SM, Hink T, Burnham CA, Dubberke ER. Prevalence and risk factors for asymptomatic Clostridium difficile carriage. Clin Infect Dis 59(2):216-22 (2014).
13.	Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RL, Donskey CJ. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis 45(8):992-8 (2007).
14.	Lanzas C, Dubberke ER, Lu Z, Reske KA, Grohn YT. Epidemiological model for Clostridium difficile transmission in healthcare settings. Infect Control Hosp Epidemiol 32(6):553-61 (2011).
15.	Kong LY, Dendukuri N, Schiller I, Bourgault AM, Brassard P, Poirier L, et al. Predictors of asymptomatic Clostridium difficile colonization on hospital admission. Am J Infect Control 43(3):248-53 (2015).
16.	Shim JK, Johnson S, Samore MH, Bliss DZ, Gerding DN. Primary symptomless colonisation by Clostridium difficile and decreased risk of subsequent diarrhoea. Lancet 351(9103):633-6 (1998).
17.	Farooq PD, Urrunaga NH, Tang DM, von Rosenvinge EC. Pseudomembranous colitis. Dis Mon 61(5):181-206 (2015).
18.	Adams SD, Mercer DW. Fulminant Clostridium difficile colitis. Curr Opin Crit Care 13(4):450-5 (2007).
19.	Bolton RP, Read AE. Clostridium difficile in toxic megacolon complicating acute inflammatory bowel disease. Br Med J (Clin Res Ed) 285(6340):475-6 (1982.)
20.	Chaves-Olarte E, Weidmann M, Eichel-Streiber C, Thelestam M. Toxins A and B from Clostridium difficile differ with respect to enzymatic potencies, cellular substrate specificities, and surface binding to cultured cells. J Clin Invest 100(7):1734-41 (1997).
21.	Jank T, Giesemann T, Aktories K. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology 17(4):15R-22R (2007).
22.	Tian JH, Fuhrmann SR, Kluepfel-Stahl S, Carman RJ, Ellingsworth L, Flyer DC. A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. Vaccine 30(28):4249-58 (2012).
23.	Pothoulakis C. Effects of Clostridium difficile toxins on epithelial cell barrier. Ann N Y Acad Sci 915:347-56 (2000).
24.	Debast SB, Bauer MP, Kuijper EJ, European Society of Clinical M, Infectious D. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 20 Suppl 2:1-26 (2014).
25.	Kim PH, Iaconis JP, Rolfe RD. Immunization of adult hamsters against Clostridium difficile-associated ileocecitis and transfer of protection to infant hamsters. Infect Immun 55(12):2984-92 (1987).
26.	Giannasca PJ, Zhang ZX, Lei WD, Boden JA, Giel MA, Monath TP, et al. Serum antitoxin antibodies mediate systemic and mucosal protection from Clostridium difficile disease in hamsters. Infect Immun 67(2):527-38 (1999).
27.	Torres JF, Lyerly DM, Hill JE, Monath TP. Evaluation of formalin-inactivated Clostridium difficile vaccines administered by parenteral and mucosal routes of immunization in hamsters. Infect Immun 63(12):4619-27 (1995).
28.	Rees WD, Steiner TS. Adaptive immune response to Clostridium difficile infection: A perspective for prevention and therapy. Eur J Immunol 48(3):398-406 (2018).
29.	Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med 11(4 Suppl):S45-53 (2005).
30.	Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30(14):2790-8 (2009).
31.	Dong Y, Feng SS. Poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int J Pharm 342(1-2):208-14 (2007).
32.	Habraken GJ, Heise A, Thornton PD. Block copolypeptides prepared by N-carboxyanhydride ring-opening polymerization. Macromol Rapid Commun 33(4):272-86 (2012).
33.	Klinker K, Barz M. Polypept(o)ides: Hybrid Systems Based on Polypeptides and Polypeptoids. Macromol Rapid Commun 36(22):1943-57 (2015).
34.	Huang YF, Lu SC, Huang YC, Jan JS. Cross-linked, self-fluorescent gold nanoparticle/polypeptide nanocapsules comprising dityrosine for protein encapsulation and label-free imaging. Small 10(10):1939-44 (2014).
35.	Wang SS, Hsieh PL, Chen PS, Chen YT, Jan JS. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation. Colloids Surf B Biointerfaces 111:423-31 (2013).
36.	Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, et al. Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17(9):3469-78 (1989).
37.	Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10(9):R102 (2009).
38.	Liu YW, Chen YH, Chen JW, Tsai PJ, Huang IH. Immunization with Recombinant TcdB-Encapsulated Nanocomplex Induces Protection against Clostridium difficile Challenge in a Mouse Model. Front Microbiol 8:1411 (2017).
39.	Gibson MI, Cameron NR. Organogelation of sheet-helix diblock copolypeptides. Angew Chem Int Ed Engl 47(28):5160-2 (2008).
40.	Chen YF, Shiau AL, Chang SJ, Fan NS, Wang CT, Wu CL, et al. One-dimensional poly(L-lysine)-block-poly(L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis. Acta Biomater 55:283-95 (2017).
41.	Hsiao L-WL, Y.-D.; Lai, J.-T.; Hsu, C.-C.; Wang, N.-Y.; Wang, S. S.-S.; Jan, J.-S.* Cross-Linked Polypeptide-Based Gel Particles by Emulsion for Efficient Protein Encapsulation. Polymer science 115 (2017).
42.	Lindsay JA, Beaman TC, Gerhardt P. Protoplast water content of bacterial spores determined by buoyant density sedimentation. J Bacteriol 163(2):735-7 (1985).
43.	See I, Mu Y, Cohen J, Beldavs ZG, Winston LG, Dumyati G, et al. NAP1 strain type predicts outcomes from Clostridium difficile infection. Clin Infect Dis 58(10):1394-400 (2014).
44.	Reeves AE, Theriot CM, Bergin IL, Huffnagle GB, Schloss PD, Young VB. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile Infection. Gut Microbes 2(3):145-58 (2011).
45.	Hung YP, Ko WC, Chou PH, Chen YH, Lin HJ, Liu YH, et al. Proton-Pump Inhibitor Exposure Aggravates Clostridium difficile-Associated Colitis: Evidence From a Mouse Model. J Infect Dis 212(4):654-63 (2015).
46.	Toellner KM, Luther SA, Sze DM, Choy RK, Taylor DR, MacLennan IC, et al. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J Exp Med 187(8):1193-204 (1998).
47.	Snapper CM, Paul WE. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236(4804):944-7 (1987).
48.	Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol 27:485-517 (2009).
49.	Labbe AC, Poirier L, Maccannell D, Louie T, Savoie M, Beliveau C, et al. Clostridium difficile infections in a Canadian tertiary care hospital before and during a regional epidemic associated with the BI/NAP1/027 strain. Antimicrob Agents Chemother 52(9):3180-7 (2008).
50.	Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med 372(9):825-34 (2015).
51.	Babcock GJ, Broering TJ, Hernandez HJ, Mandell RB, Donahue K, Boatright N, et al. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect Immun 74(11):6339-47 (2006).
52.	Chen W, Liu WE, Li YM, Luo S, Zhong YM. Preparation and preliminary application of monoclonal antibodies to the receptor binding region of Clostridium difficile toxin B. Mol Med Rep 12(5):7712-20 (2015).
53.	Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, et al. Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections. MBio 6(3):e00551 (2015).
54.	Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29(8):1035-41 (1988).
55.	Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8(1):146-52 (2007).
56.	Pechine S, Deneve C, Le Monnier A, Hoys S, Janoir C, Collignon A. Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS Immunol Med Microbiol 63(1):73-81 (2011).
57.	Feng C, Li J, Kong M, Liu Y, Cheng XJ, Li Y, et al. Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf B Biointerfaces 128:439-47 (2015).
58.	Feng G, Jiang Q, Xia M, Lu Y, Qiu W, Zhao D, et al. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection. PLoS One 8(4):e61135 (2013).
59.	Flach TL, Ng G, Hari A, Desrosiers MD, Zhang P, Ward SM, et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med 17(4):479-87 (2011).
60.	De Magistris MT. Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev 58(1):52-67 (2006).
61.	Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods 40(1):1-9 (2006).
62.	Yu H, Chen K, Sun Y, Carter M, Garey KW, Savidge TC, et al. Cytokines Are Markers of the Clostridium difficile-Induced Inflammatory Response and Predict Disease Severity. Clin Vaccine Immunol 24(8) (2017).
63.	Lyras D, O'Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna T, et al. Toxin B is essential for virulence of Clostridium difficile. Nature 458(7242):1176-9 (2009).
64.	Kink JA, Williams JA. Antibodies to recombinant Clostridium difficile toxins A and B are an effective treatment and prevent relapse of C. difficile-associated disease in a hamster model of infection. Infect Immun 66(5):2018-25 (1998).
 
 校內:2023-07-27公開
                                        校內:2023-07-27公開