簡易檢索 / 詳目顯示

研究生: 李宛庭
Li, Wan-ting
論文名稱: 以中孔洞中空碳球-奈米碳管海膽材料當燃料電池之陰極觸媒擔體
Urchin-like Material of Mesoporous Carbon Hollow Spheres Grown with Carbon Nanotubes as Cathode Support for Fuel cell
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 91
中文關鍵詞: 碳材中空洞材料奈米粒子耐久性質子交換膜燃料電池
外文關鍵詞: mesoporous materials, carbon materials, nanoparticles, durability, proton exchange membrane fuel cell
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以含浸法製備鐵奈米粒子於中孔洞中空碳球上,再以化學氣相沉積法於碳球表面生長奈米碳管,合成出新穎之海膽狀碳材。使用不同孔洞大小的中孔洞中空碳球及控制化學氣相沉積的時間長短,皆會影響此中孔洞碳材-奈米碳管複合材料的形態。實驗中以四點碳針法和氮氣吸脫附曲線測量碳材的導電度及孔洞特性,由結果可知海膽狀碳材的導電度(47.3~59.6 Scm-1)比中孔洞中空碳球及商用碳球XC-72高,且依然保持相當高的表面積(357~416 m2/g)。研究中使用循環伏安法及定電位氧化的方式來量測碳材的表面電荷的變化,藉此探討碳材的穩定性,結果顯示中孔洞中空碳材的表面電荷變化度是最大的,而在其表面成長奈米碳管後可改善碳材的氧化程度,增加電化學耐久性。為了將海膽狀碳材應用於燃料電池的觸媒層,先以化學還原法製備鉑奈米粒子,並用benzylamine充當保護和分散劑來擔載鉑觸媒於碳材表面。由穿透式電子顯微鏡(TEM)觀察顯示,熱處理完所得到的鉑觸媒粒徑大約2.0 nm,而以循環伏安法量測觸媒的電化學吸附表面積(EAS),由結果得知使用海膽狀碳材做為擔體的觸媒活性表面積幾乎是商用品E-TEK的兩倍,並且測量經過30000個cycles的CV掃描後,以海膽狀碳材做為擔體的觸媒活性表面積的衰退程度,比中孔洞中空碳球做為擔體的觸媒表面積低,而且所得到的表面積仍大於E-TEK,表示以海膽狀碳材為鉑觸媒擔體觸媒層具有較佳的耐久性。此外,本實驗以循環伏安法來評估觸媒對氧氣還原反應(ORR)的活性,由ORR的極化曲線圖中的on-set電位和半波電位可知,以海膽狀碳材為觸媒擔體的觸媒層對氧氣還原的活性比E-TEK高。實際用於質子交換膜燃料電池測試後,我們製備的觸媒的效能都優於E-TEK,尤其是海膽狀碳材所擔載的白金觸媒其效能更是高出E-TEK 36%。為了能比較出碳材的優劣,我們用和E-TEK相同的碳材XC-72,再用相同的方法擔載鉑觸媒得到Pt-XC-72,從電池測試的效能和耐久度測試結果,可以知道仍是海膽狀碳材所製備的觸媒比Pt-XC-72所得到的效能高。綜合各種實驗結果,可知以奈米碳管成長於中孔洞中空碳球表面所形成的海膽狀碳材應用於燃料電池的陰極觸媒層,是一個極具潛力的觸媒擔體。

    The urchin-like carbon material (UC) with high surface area (357~416 m2/g), sufficient electrical conductivity (47.3~59.6 Scm-1) and good chemical stability were successfully prepared by growing carbon nanotubes onto mesoporous carbon hollow spheres (MC). We prepared Pt catalyst by the reduction of citrate and then heat-treated to prepare Pt nanoparticles. Pt depositions on the urchin-like carbon was then conducted by benzylamine stabilize Pt onto the carbon supports. The main diameters based on the estimate of 200 particles selected randomly are 2.5 ± 1.8, 2.2 ± 0.4, 2.2 ± 0.5 nm for the Pt/MC, Pt/UC20 and Pt/UC45 respectively. XPS revealed the percentages of Pt (0) are given as 85.3 % for the Pt/C catalyst; this figure is higher than that of the E-TEK Pt/C catalyst, namely 73.5 %. Significant enhancement in the electrochemical active surface area (EAS) and durability of supported catalysts has been achieved by the urchin-like carbon supported Pt nanoparticles compared with carbon black Vulcan XC-72 supported ones. In addition, much higher power (~321 mW/cm2) was delivered by the urchin-like carbon supported Pt catalyst (i.e., corresponding to an enhancement of ca. 37 % in power density compared with that of E-TEK), suggesting that urchin-like carbon is a unique cathode catalyst support in proton exchange membrane fuel cell.

    Abstract I Abstract (Chinese) II 誌謝 IV List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1. Concept of Fuel Cells 1 1.1.1. Fuel Cell Types1 3 1.1.2. Benefits of Fuel Cells1 6 1.1.3. Fuel Cell Basics Application6 7 1.2. Fundamental Aspect of PEMFC 8 1.2.1. Catalysts 9 1.2.2. Solid Polymer Electrolyte: Proton Exchange Membrane 10 1.2.3. Catalyst Support 12 1.2.4. Improvements of Materials for PEMFC 14 Chapter 2 Instrument Theorems 16 2.1. Chemical vapor deposition, CVD 16 2.2. Cyclic Voltammeter, CV50-55 23 2.2.1. Electrochemical Active Surface Area, EAS area59-62 30 2.3. PEMFC Electrochemical Performance , Membrane Electrode Assembly1,72 36 Chapter 3 Experiment Section 39 3.1. Materials 39 3.2. Sample Preparation 39 3.2.1. Synthesis of Mesoporous Carbon Hollow Spheres 39 3.2.2. Preparation of Urchin-like Carbon 40 3.2.3. Syntheses of Pt Nanocatalyst 41 3.2.4. Preparation of Working Electrode 42 3.2.5. Preparation of Membrane Electrode Assembly (MEA) 43 3.3. Characterizations 45 Chapter 4 Results and Discussion 48 4.1. Qualitative Analysis of Mesoporous Carbon Hollow Spheres 48 4.2. Morphology of Urchin-like Carbon Materials 50 4.3. Quantitative Analysis of Urchin-like Carbon materials 55 4.4. Morphology of Pt Deposition onto Urchin-like carbon support 57 4.5. The Study of X-ray Diffraction (XRD) 62 4.6. The Study of X-ray Photoelectron Spectroscopy (XPS) 64 4.7. The study of TG analysis 66 4.7.1 Thermal Decomposition of As-prepared materials 66 4.7.2 Real Loading Weight Percents of Pt/C by TG Analysis 67 4.8. Electrochemical Analysis 68 4.8.1. The Electrochemical Durability of Carbon Materials 68 4.8.2. Estimation of Electrochemical Active Surface Areas (EAS) 70 4.8.3. EAS for the Effect of Oxidation Treatment on Pt 74 4.8.4. Evaluation of Oxygen Electro-Reduction Activity 76 4.9. Single Cell Performances 78 Chapter 5 Conclusion 81 References 84

    (1)James, L.; Andrew, D., Fuel Cell systems Explained, John Weiley, 2003
    (2)Chen, P.; Wu, X.; Lin, J.; Tan, K. L., High H-2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science, 285, 5424, 1999
    (3)Bolmen, L. J.; J., M.; N., M. M., Fuel Cell Systems, Plenum Press, New York and London, 1993
    (4)Stonehart, P., DEVELOPMENT OF ALLOY ELECTROCATALYSTS FOR PHOSPHORIC-ACID FUEL-CELLS (PAFC), J. Appl. Electrochem., 22, 11, 1992
    (5)Acres, G. J. K.; Frost, J. C.; Hards, G. A.; Potter, R. J.; Ralph, T. R.; Thompsett, D.; Burstein, G. T.; Hutchings, G. J.; Elsevier Science Bv, 1997; pp 393-400.
    (6)Malhotra, S.; Datta, R., Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells, Journal of the Electrochemical Society, 144, 2, 1997
    (7)Yang, C., Fuel Cell Fundamentals, Hydrogen Economy TTP 289-002,
    (8)Ryan O'Hayre; Colella, W.; Cha, S.-W.; Prinz, F. B., FUEL CELL PRINCIPLES, 2009
    (9)Yu, X. W.; Ye, S. Y., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC - Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst, J. Power Sources, 172, 1, 2007
    (10)Yu, X. W.; Ye, S. Y., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC - Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst, J. Power Sources, 172, 1, 2007
    (11)Joo, J. B.; Kim, Y. J.; Kim, W.; Kim, N. D.; Kim, P.; Kim, Y.; Lee, Y. W.; Yi, J., 2008; pp 431-436.
    (12)Mauritz, K. A.; Moore, R. B., State of understanding of Nafion, Chem. Rev., 104, 10, 2004
    (13)Che, G. L.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R., Carbon nanotubule membranes for electrochemical energy storage and production, Nature, 393, 6683, 1998
    (14)Tang, J. M.; Itkis, M. E.; Wang, C.; Wang, X.; Yan, Y.; Haddon, R. C., Carbon nanotube free-standing membrane as gas diffusion layer in hydrogen fuel cells, Micro & Nano Letters, 1, 1, 2006
    (15)Matsumoto, T.; Komatsu, T.; Arai, K.; Yamazaki, T.; Kijima, M.; Shimizu, H.; Takasawa, Y.; Nakamura, J., Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes, Chem. Commun., 7, 2004
    (16)Liu, Z. L.; Lin, X. H.; Lee, J. Y.; Zhang, W.; Han, M.; Gan, L. M., Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir, 18, 10, 2002
    (17)Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M., Pt-Ru/carbon fiber nanocomposites: Synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance, J. Phys. Chem. B, 106, 4, 2002
    (18)Han, K. I.; Lee, J. S.; Park, S. O.; Lee, S. W.; Park, Y. W.; Kim, H.; Pergamon-Elsevier Science Ltd, 2004; pp 791-794.
    (19)Sun, C. L.; Chen, L. C.; Su, M. C.; Hong, L. S.; Chyan, O.; Hsu, C. Y.; Chen, K. H.; Chang, T. F.; Chang, L., Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity, Chem. Mat., 17, 14, 2005
    (20)Tang, H.; Chen, J. H.; Nie, L. H.; Liu, D. Y.; Deng, W.; Kuang, Y. F.; Yao, S. Z., High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs), J. Colloid Interface Sci., 269, 1, 2004
    (21)Wang, X.; Li, W. Z.; Chen, Z. W.; Waje, M.; Yan, Y. S., Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell, J. Power Sources, 158, 1, 2006
    (22)Kim, C.; Kim, Y. J.; Kim, Y. A.; Yanagisawa, T.; Park, K. C.; Endo, M.; Dresselhaus, M. S., High performance of cup-stacked-type carbon nanotubes as a Pt-Ru catalyst support for fuel cell applications, J. Appl. Phys., 96, 10, 2004
    (23)Li, W. Z.; Wang, X.; Chen, Z. W.; Waje, M.; Yan, Y. S., Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells, J. Phys. Chem. B, 110, 31, 2006
    (24)Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B, 103, 37, 1999
    (25)Toebes, M. L.; van der Lee, M. K.; Tang, L. M.; in 't Veld, M. H. H.; Bitter, J. H.; van Dillen, A. J.; de Jong, K. P., Preparation of carbon nanofiber supported platinum and ruthenium catalysts: Comparison of ion adsorption and homogeneous deposition precipitation, J. Phys. Chem. B, 108, 31, 2004
    (26)Du, H. D.; Gan, L.; Li, B. H.; Wu, P.; Qiu, Y. L.; Kang, F. Y.; Zeng, Y. Q., Influences of mesopore size on oxygen reduction reaction catalysis of Pt/carbon aerogels, J. Phys. Chem. C, 111, 5, 2007
    (27)Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G., Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter, J. Am. Chem. Soc., 124, 32, 2002
    (28)Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles (vol 412, pg 169, 2001), Nature, 414, 6862, 2001
    (29)Fernandez, J. L.; Raghuveer, V.; Manthiram, A.; Bard, A. J., Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells, J. Am. Chem. Soc., 127, 38, 2005
    (30)Raghuveer, V.; Manthiram, A., Mesoporous carbons with controlled porosity as an electrocatalytic support for methanol oxidation, Journal of the Electrochemical Society, 152, 8, 2005
    (31)Raghuveer, V.; Manthiram, A.; Bard, A. J., Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells, J. Phys. Chem. B, 109, 48, 2005
    (32)Fang, B. Z.; Kim, J. H.; Kim, M.; Yu, J. S., Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell, Phys. Chem. Chem. Phys., 11, 9, 2009
    (33)Chang, K. W.; Lim, Z. Y.; Du, F. Y.; Yang, Y. L.; Chang, C. H.; Hu, C. C.; Lin, H. P., 2009; pp 448-451.
    (34)Piao, Y. Z.; An, K. J.; Kim, J. Y.; Yu, T. Y.; Hyeon, T. H., Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres, Journal of Materials Chemistry, 16, 29, 2006
    (35)Ambrosio, E. P.; Francia, C.; Manzoli, M.; Penazzi, N.; Spinelli, P.; Pergamon-Elsevier Science Ltd, 2008; pp 3142-3145.
    (36)Ambrosio, E. P.; Francia, C.; Gerbaldi, C.; Penazzi, N.; Spinelli, P.; Manzoli, M.; Ghiotti, G.; Springer, 2008; pp 1019-1027.
    (37) Kim, M.; Park, J. N.; Kim, H.; Song, S.; Lee, W. H.; Elsevier Science Bv, 2006; pp 93-97.
    (38)Pierson, H. O., Handbook of Chemical Vapor Deposition second edition William Angrew Publishing, Norwich, New York, , 1999
    (39)Spear, K. E., THERMOCHEMICAL MODELING OF STEADY-STATE CVD PROCESSES, Journal of the Electrochemical Society, 131, 3, 1984
    (40)Sherman, A., Chemical Vapor Deposition for Electronics, Noyes Publications, New York, , 1987
    (41)Eftekhari, A.; Jafarkhani, P.; Moztarzadeh, F., High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition, Carbon, 44, 7, 2006
    (42)Lab., F., <http://fmpanlab.twbbs.org/main.htm>,
    (43)Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 282, 5391, 1998
    (44)LAb,N., <http://www.nano-lab.com/home.html>,
    (45)Collins, P. G.; Avouris, P., Scientific American: 67, 68, and 69, 2000
    (46)Kumar, M.; Ando, Y., Carbon Nanotubes from Camphor: An Environment-Friendly Nanotechnology, Journal of Physics, 2007
    (47)Boyd, J., "Rice chemists create, grow nanotube seeds <http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=9070>", Rice University, 2006
    (48)Monthioux, M.; Allouche, H.; Jacobsen, R. L., Chemical vapour deposition of pyrolytic carbon on carbon nanotubes - Part 3: Growth mechanisms, Carbon, 44, 15, 2006
    (49)Nanothinx, http://www.nanothinx.com/,
    (50)Bond, A. M., Broadening Electrochemical Horizons - Principles and Illustration of Voltammetric and Related Techniques, Oxford University Press Inc., New York, , 2002
    (51)Bockris, J. O. M.; Reddy, A. K. N.; Gamboa-Aldeco, M., Modern Electrochemistry 2nd ed, Kluwer Academic / Plenum Publishers, New York, , 2000
    (52)Gosser, D. K., Cyclic Voltammetry : simulation and analysis of reaction mechanism, VCH Publisher Inc., 1993
    (53)Wang, J. H., Analytical Electrochemistry, 2nd ed., Wiley-VCH, New York, 2000
    (54)Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons Inc., 2001
    (55)Bagotzky, V. S., Fundamentals of Electrochemistry, Plenum Press, New York 1993
    (56)Salgado, J. R. C.; Antolini, E.; Gonzalez, E. R., Preparation of Pt-Co/C electrocatalysts by reduction with borohydride in acid and alkaline media: the effect on the performance of the catalyst, J. Power Sources, 138, 1-2, 2004
    (57)Christensen, P. A.; Hamnett, A., Techniques and Mechanisms in Electrochemistry, Chapman & Hall, 1994
    (58)Shain, I.; Nicholson, R. S., Ciitation Classiz-theory of Stationary Electrode polarography - Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systerms Current Contents/Physical Chemical & Earth Sciences, 6, 1981
    (59)Vielstich, W.; Lamm, A.; Gasteiger, H. A., Handbook of Fuel Cells : Fundamentals Technology and Applications, John Wiley & Sons Inc., 2003
    (60)Sawyer, D. T.; Sobkowiak, A.; Roberts, J. L., Electrochemistry for Chemists, John Wiley & Sons Inc., 1995
    (61)Kinoshita, K.; Ferrier, D. R., Experient Studies on Flooded Porous Electrocatalyst Electrodes Journal of the Electrochemical Society, 123, 8, 1976
    (62)Kinoshita, K.; Ferrier, D. R.; Stonehart, P., Effect of Electrolyte Environment and Pt Crystallite Size on Hydrogen Adsorption.5, Electrochimica Acta, 23, 1, 1978
    (63)Brunnauer, S.; Emmet, P. H.; Teller, E., J. Am. Chem. Soc., 1938
    (64)Trasatti, S.; Petrii, O. A., REAL SURFACE-AREA MEASUREMENTS IN ELECTROCHEMISTRY, Pure and Applied Chemistry, 63, 5, 1991
    (65)Trasatti, S.; Petrii, O. A., REAL SURFACE-AREA MEASUREMENTS IN ELECTROCHEMISTRY, J. Electroanal. Chem., 327, 1-2, 1992
    (66)Will, F., Hydrogen Adsorption on Platinum Single Crystal Electrodes, J. Electrochem. Soc., 112, 1965
    (67)Gilman, S., Metal-amine Complexes in Ion Exchange. III. Diamine Complexes of Silver(I) and Niickel(II) J. Phys. Chem., 66, 1, 1962
    (68)Gilman, S., Electroanalytical Chemistry – A Series of Advances A. J. Bard (Ed), Marcel Dekker, New York, , 2, 451, 1967
    (69)Breiter, M.; Kammermeier, H.; Knorr, C. A., Elektrochem., 60, 1956
    (70)R., W., Hydrogen Adcorption on Platinum, Iridium and Rhodium Electrodes at Reduced Temperatures and Determination of Real Surface-area, J. Electroanal. Chem., 49, 2, 1974
    (71)Gilman, S., Measurement of hydrogen adsorption by the multipulse potentiodynamic (mpp) method, J. Electroanal. Chem., 7, 5, 1964
    (72)EG&G Technical Services, I., Fuel Cell Handbook(Seventh Edition), 2004
    (73)Swapp, S., Scanning Electron Microscopy (SEM), Geochemical Instrumentation and Analysis,
    http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html,
    (74)陳力俊, 材料電子顯微鏡學, 國科會精儀中心, 1994
    (75)Cullity, B. D., Elements of X-RAY Diffraction, 2nd edition, Addison- Wesley, 1978
    (76)Liu, J. W.; Xu, L. Q.; Zhang, W.; Lin, W. J.; Chen, X. Y.; Wang, Z. H.; Qian, Y. T., Formation of carbon nanotubes and cubic and spherical nanocages, J. Phys. Chem. B, 108, 52, 2004
    (77)Zhao, M. Q.; Crooks, R. M., Intradendrimer exchange of metal nanoparticles, Chem. Mat., 11, 11, 1999
    (78)Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis, Accounts Chem. Res., 34, 3, 2001
    (79)Mu, Y. Y.; Liang, H. P.; Hu, J. S.; Jiang, L.; Wan, L. J., Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells, J. Phys. Chem. B, 109, 47, 2005
    (80)Kuo, P. L.; Chen, W. F.; Huang, H. Y.; Chang, I. C.; Dai, S. A., Stabilizing effect of pseudo-dendritic polyethylenimine on platinum nanoparticles supported on carbon, J. Phys. Chem. B, 110, 7, 2006
    (81)Wang, H. J.; Yin, G. P.; Shao, Y. Y.; Wang, Z. B.; Gao, Y. Z., Electrochemical durability investigation of single-walled and multi-walled carbon nanotubes under potentiostatic conditions, J. Power Sources, 176, 1, 2008
    (82)Kangasniemi, K. H.; Condit, D. A.; Jarvi, T. D., Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions, Journal of the Electrochemical Society, 151, 4, 2004

    下載圖示 校內:2010-07-29公開
    校外:2010-07-29公開
    QR CODE