簡易檢索 / 詳目顯示

研究生: 蔣森武
Chiang, Sen-Wu
論文名稱: 電化學泵應用於氫回收之研究
Studies of Hydrogen Recovery with Electrochemical Pumping
指導教授: 王振源
Wang, Chen-Yuan
賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 122
中文關鍵詞: 質子交換膜燃料電池電化學泵氫氣回收率氣體增壓
外文關鍵詞: PEMFC, electrochemical pump, anode humidification temperature, hydrogen recovery rate, hydrogen pressurized
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用質子交換膜燃料電池(PEMFC)作為電化學泵(Electrochemical Pump)媒介,進而達到殘餘氫氣回收之目的。一般燃料電池為利用氫氣與氧氣經電化學反應產生電能和水。然而電化學泵的機制乃是利用陽極端的氫氣通過質子交換膜還原成氫離子,此時再由外部電源提供電子,進而在陰極處結合形成氫氣藉由此種方式可以有效的將多餘的氫氣回收再利用並節省陽極端燃料的浪費。然而在本研究中也針對陽極增濕溫度以及電化學泵溫度進行操作參數對燃料電池回收氫氣速率影響之探討。
    依據本研究所進行之實驗,吾人發現在陽極增濕溫度與電化學泵操作溫度皆為50 oC下為電化學泵最佳操作參數,且能量回收效率可達47%。並利用實驗結果所得到之電化學泵最佳操作參數於陰極出口端對回收之氣體進行建壓並觀察壓力與時間之變化,此增壓過程之目的為提高氣體壓力足以重新導回燃料入口端,並使用雙級增壓系統再次提升回收氣體壓力。再者,分析不同氫氣濃度經由電化學泵純化之尾氣以及一氧化碳對於電化學泵性能之影響也於本實驗中進行探討。

    In this study, a polymer electrolyte membrane (PEM) fuel cell is used as a hydrogen recovery device based on the theory of electrochemical pumps. Contrast to standard fuel cells which generate electricity and water due to the electrochemical reaction, the fuel cell does not generate electricity. Electrochemical pumps consume power to pump ion of hydrogen across the polymer electrolyte membrane to react with electrons and generate hydrogen in the cathode. This way can recovery hydrogen effectively and reduce fuel that the waste while using the anodic water removal method. However, it was treated anodic humidification temperatures and different cell temperatures with different applied voltage to find the better performance when the system connected with the electrochemical pumps.
    From the analysis of experimental data it is possible to evaluate the performance of hydrogen recovery effects on different anodic humidification temperatures, different cell temperatures. Results shows that when cell temperature at 50 oC and anode humidification temperature at 50 oC the performance of hydrogen recovery rate is better than others and the energy recovery efficiency of electrochemical pumps in this operation situation can get to 47%. Using electrochemical pumps to enhance the pressure of cathode volume may be pressurize the hydrogen at the different applied voltage so it can pump up or separate hydrogen from the low pressure anode to the high pressure cathode and the method of two stage electrochemical pumps can pressurize the recovery hydrogen from the first electrochemical pump again. On the other hand, gas purity measurements of the nitrogen/hydrogen mixture gas were performed and the effects of the carbon monoxide poisoning on electrochemical pump performance were achieved.

    第1章 緒論 1 1-1前言 1 1-2研究動機 2 1-3文獻回顧 3 1-4 研究目標 15 第2章 燃料電池與電化學泵基礎理論 17 2-1質子交換膜燃料電池基本構造 18 2-2以PEMFC作為電化學泵之工作原理 24 第3章 實驗設備 27 3-1 電化學泵測試系統 31 3-1-1 電池加熱及增溼系統 33 3-1-2 資料及擷取系統 34 3-2壓力建置系統 35 3-3氣體混合機 36 3-4氣相層析儀 37 3-5自製質子交換膜燃料電池 40 第4章 實驗理論與研究方法 42 4-1性能評估方法 42 4-1-1 極化曲線 42 4-1-2陽極過電位 47 4-2 電化學泵(Electrochemical Pump)工作原理 48 4-2-1 電化學泵效率公式 51 4-3觸媒表面化學現象及平衡 52 4-4實驗方法 56 第5章 結果與討論 59 5-1電化學泵溫度與氣體增濕度對電化學泵氫氣回收之影響 59 5-1-1氫氣增溼温度對電化學泵氫氣回收之影響 60 5-1-2電化學泵操作溫度對電化學泵氫氣回收之影響 67 5-1-3氫氣相對增濕對電化學泵氫氣回收之影響 75 5-2 壓力建置於電化學泵之影響 82 5-2-1壓力於單級電化學泵之影響 82 5-2-2壓力於雙級電化學泵之影響 87 5-3 氫氣濃度對於電化學泵之影響 101 5-3-1 氫氣濃度對於電化學泵性能之影響 102 5-3-2不同氫氣濃度下壓力對電化學泵之影響 106 5-3-3不同氫氣濃度對電化學泵尾氣之分析 109 5-4純氫下一氧化碳對電化學泵性能之影響 110 第6章 結論 114 第7章 未來工作 116 參考文獻 117

    1. 陳振源, “未來的綠色能源─燃料電池,” 科學發展月刊: 319期, pp. 62-65, 2005年7月.
    2. R. Menzer, B. Höhelin “Analysis of Energy and Water Management in Terms of Fuel-cell Electricity Generation,” Journal of Power Sources, 71_(1998) 294-301.
    3. B. Emonts , J. Bøgild Hansen, H. Schmidt, T. Grube, B. Höhelin, R. Peters, A. Tschauder, “Fuel Cell Drive System with Hydrogen Generation in Test,” Journal of Power Sources, 86_(2000) 228–236
    4. D. B., Daisie J.M. Michael, “Proton Exchange Membrane (PEM) Fuel Cell-powered Vehicle Performance Using Direct-Hydrogen Fueling and On-board Methanol Reforming,” Energy 29_(2004) 2317–2330
    5. Tokyo Gas/工業材料雜誌第250期
    6. K. Sato, “Fuel Supply Device for Fuel Cell, Honda,” U.S. Patent No. 6,670, Dec. 2003,
    7. Y. K., Amey, J.Sun and J.H. Buckland.“ Control Analysis of an Ejector Based Fuel-cell Anode Recirculation System,” Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14-16, 2006.
    8. Y. Zhu, Y. Li and W. Cai, “Numerical Modeling and Analysis of Ejector in the Proton Exchange Membrane Fuel Cell System,” ©2009 IEEE
    9. O.Himanen, T. Hottinen, and S. Tuurala, “Operation of a Planar Free-breathing PEMFC in a Dead-end Mode,” Electrochemistry Communications, 9(5)_(2007) 891-894.
    10. M.Uno, T. Shimada, and K. Tanaka, “Reactant Recirculation System Utilizing Pressure Swing for Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 196(5)_(2011) 2558-2566.
    11. B.Rohland, K. Eberle, R. StroÈ bel, J. Scholta and J. Garche, “ Electrochemical Hydrogen Compressor, ” Electrochimica Acta, 43(24)_(1998) 3841-3846.
    12. R., Strobel, “ The Compression of Hydrogen in an Electrochemical Cell based on a PE Fuel Cell Design, ” Journal of Power Sources, 105(2)_(2002) 208-215.
    13. H.K., Lee, H.Y. Choi , K.H. Choi, J.H. Park, T.H. Lee, “Hydrogen Separation Using Electrochemical Method, ” Journal of Power Sources 132_(2004) 92-98.
    14. http://zh.wikipedia.org/wiki/%E6%B0%AB%E6%B0%A3
    15. K.Onda, T. Araki,K. Ichihara,M. Nagahama, “Treatment of Low Concentration Hydrogen by Electrochemical Pump or Proton Exchange Membrane Fuel Cell, ” Journal of Power Sources , 188(1)_(2009) 1-7.
    16. S. Kim, S. Shimpalee, J.W. Van Zee, “The Effect of Reservoirs and Fuel Dilution on the Dynamic Cehavior of a PEMFC,” Journal of Power Sources, 137_(2004) 43-52.
    17. S. Shimpalee, U. Beuscher, J.W. Van Zee, “Investigation of Gas Diffusion Media inside PEMFC Using CFD Modeling,” Journal of Power Sources, 163¬_(2006) 480–489.
    18. M.S.,Wilson, C. Derouin, J. Valerio, S. Gottesfeld, “Electrocatalysis issues in polymer electrolyte fuel cells.,” Electrocatalysis Issues in Polymer Electrolyte Fuel Cells, (1993) 1203-1208.
    19. F.A.,Bruijn,“The Influence of Carbon Dioxide on PEM Fuel Cell Anodes,” Journal of Power Sources, 110_ (2002) 117-124.
    20. G.J.,Janssen, “Modelling Study of CO2 Poisoning on PEMFC Anodes,” Journal of Power Sources, 136_ (2004) 45-54.
    21. N.Rajalakshmi, T.T. Jayanth, and K.S. Dhathathreyan,“Effect of Carbon Dioxide and Ammonia on Polymer Electrolyte Membrane Fuel Cell Stack Performance, ” Fuel Cells, 3_(2004) 177-180.
    22. T.Tingelof, “ The Influence of CO2, CO and Air Bleed on the Current Distribution of a Polymer Electrolyte Fuel Cell,” Journal of Hydrogen Energy, 33_ (2008) 2064-2072
    23. A.Abdulla, K.Laney, M.Padilla, S.Sundaresan,and J.Benziger,“Efficiency of Hydrogen Recovery from Reformate with a Polymer Electrolyte Hydrogen Pump,”AICHE Journal, 57_(2011) 1767-1779.
    24. K.Onda, K. Ichihara.,“ Separation and Compression Characteristics of Hydrogen by Use of Proton Exchange Membrane, ” Journal of Power Sources, 164_ (2007) 1-8.
    25. T.Magnus, E.Sheridan, J. Kvello,“ Electrochemical Hydrogen Separation and Compression Using Polybenzimidazole (PBI) Fuel Cell Yechnology,” Journal of Natural Gas Science and Engineering, (2010) 229-234.
    26. G. Vasu, A.K. Tangirala, B. Viswanathan, K.S. Dhathathreyan,“Continuous Bubble Humidification and Control of Relative Humidity of H2 for a PEMFC System,” Journal of Hydrogen Energy, 33_(2008) 4640-4648.
    27. T.Tatsuo, K. Otsuka, K. Oyakawa,S. Watanabe.,“ Development of a Performance Test Method for PEFC Stack,” Journal of Power Sources, 147_ (2005) 208–213.
    28. 黃鎮江, “燃料電池,” 全華科技圖書有限公司, 台北市, 2003年。
    29. F.Marsano, L. Magistri, and A.F. Massardo,“Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System,” Journal of Power Sources, 129(2)_(2004) 216-228.
    30. M.Kim,Y.J. Sohn.,C.W. Cho.,W.Y. Lee.,C.S. Kim., “Customized Design for the Ejector to Recirculate a Humidified Hydrogen Fuel in a Submarine PEMFC,” Journal of Power Sources, 176(2)_(2008) 529-533.
    31. S.Y. ,Xingwen, “Recent Advances in Activity and Durability Enhancement of Pt/C Catalytic Cathode in PEMFC Part I,”Physico-chemical and Electronic Interaction between Pt and Carbon Support and Activity Enhancement of Pt/C catalyst, ” Journal of Power Sources, 172_(2007) 133–144.
    32. R.Jacques, Deborah, J., “Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells,” Annual Review of Materials Research, 33_ (2003) 503–555.
    33. 盛英股份有限公司 http://www.uic.com.tw/product_list.php?cid=6&id=28
    34. R.K.A.M. Mallant, “PEMFC systems: The need for High Temperature Polymers as a Consequence of PEMFC Water and Heat Management,” Journal of Power Sources, 118_(2003) 424–429.
    35. K.T., Adjemian, S. Srinivasan, J. Benziger, A.B. Bocarsly, “Investigation of PEMFC Operation above 100 oC Employing Perfluoro Sulfonic Acid Silicon Oxide Composite Membranes,” Journal of Power Sources, 109_(2002) 356–364.
    36. N. Djilali, D. Lu, “Influence of Heat Transfer on Gas and Water Transport in Fuel Cells,” Int. J. Therm. Sci, 41_(2002) 29–40.
    37. Skoog原著,林敬二,林宗義審譯,儀器分析,第四版(下冊),亞美書版股份有限公司,台北,1994。
    38. 孫逸民 等主編,儀器分析,全威圖書股份有限公司,台北,1997。
    39. 氣相層析儀簡介,http://www.ch.ntu.edu.tw/~chemedu3/Lecture/GC.htm.
    40. F. Barbir, “PEM fuel cells: Theory and Practice”New York: Elsevier/Academic Press, (2005) 23–25.
    41. A. Huth, B. Schaar, and T. Oekermann, “A "Proton Pump" Concept for the Investigation of Proton Transport and Anode Kinetics in Proton Exchange Membrane Fuel Cells,” Electrochimica Acta, 54(10)_(2009) 2774-2780.
    42. Giorgi, L., POZIO, A., BRACCHINI,C., Giorgi, R., TURT, S., “ H2 and H2/CO Oxidation Mechanism on Pt/C, Ru/C and Pt-Ru/C Electrocatalysts,” Journal of Applied Electrochemistry, 31(3)_(2001) 325-334.
    43. K. Onda, “Polymer Electrolyte Dehumidifying Cell and its Application to Air Conditioners,” Journal of the Electrochemical Society, 152(12)_(2005) A2369-A2375.
    44. T.E.,Springer, T. Rockward, T.A. Zawodzinski, S. Gottesfeld, “Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed - Effects of CO, H2 Dilution, and High Fuel Utilization,” Journal of The Electrochemical Society, 148(1) _ (2001) A11-A23.
    45. K.K., Bhatia, C.Y. Wang, “Transient Carbon Monoxide Poisoning of a Polymer Electrolyte Fuel Cell Operating on Diluted Hyrogen Feed,” Electrochimica Acta, 49_(2004)2333–2341.
    46. C.Casati, P.Longhi, L.Zanderighi, F.Bianchi, “Some Fundamental Aspects in Electrochemical Hydrogen Purification/Compression,” Journal of Power Sources, 180(1)_(2008) 103-113.
    47. A. Cutillo, S. Specchia , M. Antonini, G. Saracco, V. Specchia” Diesel fuel processor for PEM fuel cells: Two possible alternatives (ATR versus SR)” Journal of Power Sources, 154_ (2006) 379–385
    48. J.C., Amphlett, M.J. Evans, R.A. Jones, R.F. Mann, R.D. Weir, Can. J. Chem. Eng. 59 (1981) 720.
    49. J.C., Amphlett, K.A.M. Creber, J.M. Davis, R.F. Mann, B.A.Peppley, D.M. Stokes, Int. J. Hydrogen Energy 19 (1994)131
    50. W. Donitz, Int. J. Hydrogen Energy 23 (1998) 611
    51. L.Salemme, L. Menna, M. Simeone, G. Volpicelli,”Energy efficiency of membrane-based fuel processors–PEM fuel cell systems”, Journal of Hydrogen Energy, 35_(2010) 3712 – 3720
    52. S.A., Grigoriev, Shtatniy,I.G.,Millet,P.,Porembsky,V.I.,Fateev,V.N. “Description and Characterization of an Electrochemical Hydrogen Compressor/Concentrator Based on Solid Polymer Electrolyte Technology,” International Journal of Hydrogen Energy, 36(6)_(2011) 4148-4155.
    53. H.P., Dhar, L.G. Christner, A.K. Kush, “Nature of CO Adsorption During H2 Oxidation in Relation to Modeling for CO Poisoning of a Fuel Cell Anode,” Electrochemical Science And Technology, 134(1987)
    54. K.A., Perry, G.A. Eisman, and B.C. Benicewicz, “Electrochemical Hydrogen Pumping Using a High-temperature Polybenzimidazole(PBI) Membrane,” Journal of Power Sources, 177(2)_(2008) 478-484.

    下載圖示 校內:2017-08-23公開
    校外:2017-08-23公開
    QR CODE