| 研究生: |
潘維光 Pan, Wei-Kuang |
|---|---|
| 論文名稱: |
多孔散熱片流場與熱傳之數值模擬 Numerical Simulation of Fluid Flow and Heat Transfer for Porous Fin |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 數值計算 、多孔散熱片 、紊流 |
| 外文關鍵詞: | Numerical calculation, Turbulent flow, Porous fin |
| 相關次數: | 點閱:85 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要針對在平板熱交換器中,多孔散熱片對壓力降和熱傳特性的影響作數值模擬,並與S. Y. Kim(2000)之實驗結果作比較。統御方程式乃是以控制體積法(Control Volume Approach)為基礎,配合有限差分法(Finite Difference Method)及冪次法則(Power Law Scheme)來離散成差分方程式;動量方程式的速度及壓力則以SIMPLE(Semi-Implicit Method for Pressure-Linked Equation)法來解出。至於格點設計方面,則採用正交,不等間距交錯式格點系統。
本文研究的參數為層流與紊流雷諾數(Re=270~2050,5090~30540),多孔散熱片之孔隙率( =0.89、0.92、0.94、0.96),孔密度(PPI=10、20、40),工作流體為空氣。流場數值計算的結果顯示速度向量值的大小和方向會受到非達西效應的影響;而摩擦因子在低滲透率的多孔散熱片中是非常小的,乃是由於相對的表面積很大。可由所得到的數值導出多孔散熱片的摩擦因子關係式。
在熱傳效應方面,空氣流經多孔散熱片時,會隨著雷諾數的增加帶走更多的熱量。因熱對流效應增強,在紊流流場中無因次的紐賽數(Nusselt number)值會比層流流場高。多孔散熱片中的修正型j因子-j*會隨孔密度增加或孔隙率下降而下降,可由所得到的數值導出多孔散熱片的修正型j因子-j*的關係式。另外亦可發現多孔散熱片在孔密度PPI=40和 =0.89時置於平板熱交換器中會有較好的熱效益。
This study presents the numerical simulation of the impact of porous fin on the pressure drop and heat transfer characteristics in plate-fin heat exchangers compared the experimental data of S. Y. Kim(2000). The governing equations are solved by a Control-Volume-based finite-difference method with power-law scheme to describe the structure. The velocity and pressure terms of momentum equations are solved by SIMPLE(Semi-Implicit Method for Pressure-Linked Equation)method. An orthogonal non-uniform staggered grids are used for the establishment of mesh grids.
The parameters studied include the Reynolds number of laminar and turbulent flow (Re =270~2050,5090~30540), the porosity of the porous fin( =0.89、0.92、0.94、0.96), and the pore density(PPI=10、20、40), whereas the working medium is air. The numerical calculations of flow field indicate that non-Darcy effect has a significant effect on the prediction of the velocity vectors, and the friction factor is much lower for low permeable porous fins due to relatively larger surface area.
As to the heat transfer effect, air takes away more heat when it passes through the porous fins with increasing Reynolds number. Due to the enhancement of heat convection, the Nu of the turbulent flow is much higher than that of laminar flow. The modified j factor-j* of the porous fins decreases as the pore density increases or the porosity decreases. According to the numerical predictions, the correlation of modified j factor-j* for porous fins is provided as well as the friction factor. It is also found that the porous fins with low permeability and low porosity are preferable on thermal performance of plate-porous fin heat exchangers.
參考文獻
Amiri, A., and Vafai, K., “Analysis of Dispersion Effects and Non Thermal Equilibrium Non-Darcian, Variable Porosity Incompressible Flow Through Porous Medium,” Int. J. Heat Mass Transfer., 37, pp. 939-954, 1994.
Brinkman, H. C., “A Calculation of the Viscous Force Expected by a Flowing Fluid on a Dense Swarm of Particles,” Applied Science Research , Al., pp. 27-34, 1947.
Chang, Y. J., and Wang, C. C., “A Generalized Heat Transfer Correlation for Louver Fin Geometry,” Int. J. Heat Mass Transfer., 40, pp. 533-534, 1997.
Darcy H., “Les Frontainess Publiques de la Ville de Dijon,” Dalmont, Paris, 1856.
Hadim, A., “Forced Convection in a Porous Channel With Localized Heat Sources,” ASME J. Heat Transfer, 116, pp. 465-472, 1994.
Huang, P. C., and Vafai, K., “Analysis of Forced Convection Enhancement in a Channel Using Porous Blocks,” J. Thermophys. Heat Transfer, 8, pp. 563-573, 1994.
Huang, P. C., and Vafai, K., “Flow and Heat Transfer Control Using a Porous Block Array Arrangement,” Int. J. Heat Mass Transfer., 36, pp. 4019-4032, 1993.
Hwang, J. J., “Turbulent Heat Transfer and Fluid Flow in a Porous-Baffled Channel,” J. Thermophys. Heat Transfer, Vol. 11, No. 3, pp. 429-436, 1997.
Kaviany, M., “Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates,” Int. J. Heat Mass Transfer., 28, pp. 851-858,1985.
Kim, S. Y., Kim, J. H., and Kang, B. H., “Effect of Porous Fin in a Plate-Fin Heat Exchanger,” Proceedings of the ASME Heat Transfer Division, 3, ASME, New York, pp. 477-482, 1998.
Kim, S. Y., Paek, J. W., and Kang B. H., “Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger,” ASME J. Heat Transfer, Vol. 122, pp. 572-578, 2000.
Kiwan, S. and Al-Nimr, M. A. “Using Porous Fins for Heat Transfer Enhancement,” ASME J. Heat Transfer, Vol. 123, pp. 790-795, 2001.
Paek, J. W., Kang, B. H., Kim, S.Y., and Hyun, J.M., “Effective Thermal Conductivity and Permeability of Aluminum Foam Materials,” Int. J. Thermophys, 21, pp. 453-464, 2000.
Poulikakos, D. and Renken, “Buoyancy Driven Convection in a Horizontal Fluid Layer Extending over a Porous Substrate,” Physics of Fluids, 29, pp. 2949-3957, 1987.
Sung, H. J., Kim, S. Y., and Hyun, J. M., “Forced Convection From an Isolated Heat Source in a Channel With Porous Medium,” Int. J. Heat Fluid Flow, 16, pp. 527-535, 1995.
Tien, C. L., and Hunt, M. L., “Boundary-Layer Flow and Heat Transfer in Porous Beds,” Chen. Eng. Process., Vol. 21, pp. 52-63, 1988.
Vafai, K., Christensen, R. N., “Analysis of Heat Transfer and Fluid Flow Through a Spirally Fluted Tube Using a Porous Substrate Approach,” ASME J. Heat Transfer, Vol. 116, pp. 543-551, 1994.
Vafai, K., and Tien, C. L., “Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media,” Int. J. Heat Mass Transfer., Vol. 24, pp. 195-203, 1981.
Wu-Shung Fu, Hsin-Chien Huang and Wei-Yan Liou, “Thermal Enhancement in Laminar Channel Flow With a Porous Block,” Int. J. Heat Mass Transfer, Vol. 39, No. 10, pp. 2165-2175, 1996.
Wu-Shung Fu, Ke-Nan Wang and Wen-Wang Ke, “Heat Transfer of Porous Medium With Random Porosity Model in a Laminar Channel Flow,” J. Chinese Institute of Engineers, Vol. 24, No. 4, pp. 431-438, 2001.