簡易檢索 / 詳目顯示

研究生: 張淑鈞
Chang, Shu-Chun
論文名稱: 與Elves關聯的光學與電波輻射及其應用
Elves-associated Electromagnetic Emissions and their Implications
指導教授: 許瑞榮
Hsu, Rue-Ron
共同指導教授: 蘇漢宗
Su, Han-Tzong
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 126
中文關鍵詞: 高空短暫發光現象閃電天電訊號電子濃度增加
外文關鍵詞: Transient Luminous Events, Lightning, Sferics, electron enhancement.
相關次數: 點閱:96下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •         過去國內外的地面觀測結果顯示Sprite(紅色精靈)是發生率最高的高空短暫發光現象(Transient Luminous Events; TLEs),然而從ISUAL開始進行觀測之後,發現全球分佈以elves(淘氣精靈)發生率最高。elves的型態為甜甜圈狀與盤狀,與閃電發生有密切關係,因此elves被認為是由閃電所輻射的電磁波所引發的。由於elve和閃電幾乎同時發生,因此觀測上,除了閃電發生在地平線後的事件之外,elves的光學影像及光度常常受到閃電的汙染。然而ISUAL為臨邊觀測(limb viewing),因此可紀錄閃電在地平線後的elves事件。先前關於ISUAL elve的研究指出,elve的發光主要來自被激發的氮氣分子(N<sub>2</sub>),包含N<sub>2</sub> Lyman-Birge Hopfield(N<sub>2</sub> LBH)和N<sub>2</sub> first positive(N<sub>2</sub>1P)等波段,且N<sub>2</sub> 1P的亮度和閃電峰值電流有關。
            在ISUAL 記錄的閃電事件中,有一些具有遠紫外光(Far Ultraviolet; FUV)訊號,但是沒有伴隨的TLEs,我們猜測這些遠紫外光訊號可能來自於閃電或是影像中看不見的TLE,稱為“mystic FUV events”。經由計算閃電可能的遠紫外光輻射強度以及考慮大氣吸收後,已排除閃電的可能性;而由ISUAL的光譜光度資料訊號,發現mystic FUV events其遠紫外光訊號與閃電訊號峰值的時間間隔相差小於1 毫秒,與elves特性相似,分析elves在影像中的亮度以及FUV的強度後,發現兩者間呈線性關係,因此從elves的FUV強度也可對應到閃電峰值電流強度(SP1-Ip)。除此之外,mystic FUV events其SP1強度大約分布在10<sup>4</sup> photon/cm<sup>2</sup>以下,然而elves的SP1訊號強度可達6×10<sup>4</sup> photon/cm<sup>2</sup>,因此我們認為mystic FUV events是強度較弱的淘氣精靈所貢獻的。
            從2009年開始,超低頻(ULF)和甚低頻(VLF)無線電波偵測站陸續被建構,2010年8月之後,兩個測站同步紀錄資料並提供穩定的資料。我們進一步比對ISUAL在2011到2012年所紀錄距離臺灣1500公里的elves事件,藉由分析相對應的閃電電波(sferics)訊號強度,可獲得sferics傳播時的衰減率。結果顯示,VLF磁場訊號強度對距離的衰減率為-1.207 ,而ULF訊號強度對距離的衰減率為-0.871。
            除此之外,2010年8月時,地面光學觀測系統紀錄到72個高空短暫發光現象,除了光學影像,閃電的電波訊號也有被ULF和VLF測站紀錄到。將ULF 和VLF訊號強度歸一至500公里處的強度時,發現對應不同TLE的閃電,他們的ULF和VLF訊號強度的比例不同。其中Halo-producing lightning的ULF/VLF ratio為elve-producing lightning的三倍左右,然而雖然halo-producing lightning的ULF/VLF ratio和halo-sprite-producing lightning相近,但是halo-sprite lightning的ULF訊號較強。因此,我們可以從ULF/VLF peak ratio或是ULF和VLF的強度來辨別TLEs。除此之外,比較觀測和模擬的ULF和VLF訊號強度比例,發現halo-producing lightning的放電時間(dt<sub>stroke</sub>)大於300 μs ,而elve-producing lightning的放電時間在100-200 μs。
            藉由分析ISUAL 2011-2012地平線後的elve事件,發現SP1-Ip大於~150 kA有相對應的氮氣離子(N<sub>2</sub><sup>+</sup>1N(0,0))光學訊號,也就是有因為游離而產生的電子濃度增加現象。在這些事件中,其中SP1-Ip最強的是~300 kA,藉由elve model估計最大可使電子濃度增加~250%。在這樣的環境下,若後續閃電強度與前一個相同,所產生的elve其上半部亮度減少,下半部亮度增加。除此之外,比對ISUAL elve事件和量測到的日本JJI VLF訊號擾動,發現SP1-Ip大於~150kA的elve事件有相對應的振幅擾動,因此VLF電波訊號對於局部的電子濃度變化較為敏感。

            Before ISUAL (Imager of Sprite and Upper Atmospheric Lightning) starts to carry out routine space-borne observations, sprite is often noted to be the most frequently observed species of TLEs (Transient Luminous Events). Since then, the ISUAL global survey data unequivocally demonstrate that elves actually are the most abundant species of TLEs. It has been proposed that the mechanism which generates elves is the electromagnetic pulse launched by intense lightning, due to their apparent donut shapes. The proximity between elves and the causative lightning renders the spectrophotometer observations of the elve optical emissions are always contaminated by the lightning emissions except for the event triggered by lightning located behind the Earth limb. For this type of behind the limb events, the parent lightning emissions are blocked by the solid earth and thus do not contribute to the data recorded by the ISUAL sensors. Previous studies had also shown the existence of the FUV (N<sub>2</sub> LBH) emissions in elves as well as the existence of a tight correlation between the elve N<sub>2</sub> 1P emission intensity and the lightning peak current.
            Among the ISUAL recorded elves, there is a special subset of events that contains no discernible transient luminous events (TLEs) in the imager frames except for the bright lightning; however, they do possess a significant associated far ultraviolet (FUV) signal. These events are termed as the “mystic FUV events” or simply the FUV events. After factoring in the atmospheric attenuation, the lightning FUV emission was found to be completely absorbed by the atmosphere hence was extremely unlikely to be detected by the ISUAL sensors at an altitude of 891 km. The FUV emission of the FUV events closely follows the lightning OI emission within 1 ms, similar to the optical characteristics of a typical elve. By analyzing the imager-N<sub>2</sub> 1P brightness of the elves and their FUV intensity, a linear correlation was found. Thus, the FUV emission intensity of elves can be used to infer the lightning peak current. The intensity of FUV events also ranks among the dimmest elves and is less than 10<sup>4</sup> photon/cm<sup>2</sup>. Combining all the information, the FUV events finally are identified as dim elves that eluded the detection of the ISUAL imager.
            Since 2009, the NCKU team has constructed and continuously operated a ultra-low-frequency (ULF) and a very-low-frequency (VLF) radio band recording stations, to assist the operation of the ISUAL experiment. After the late August of 2010, both stations start to run simultaneously and provide good data. Through analyzing the sferics associated with ISUAL elves that occurred within 1500 km of Taiwan during 2011 and 2012, the attenuations of ULF and VLF sferics in the Earth cavity are obtained. Amplitudes of the ULF and the VLF sferics are found to vary as D<sup>-0.871</sup> and D<sup>-1.207</sup>, respectively; where D is the source distance from the sferic stations.
            While observing from the southern tip of Taiwan on 2 August 2010, a thunderstorm near Luzon Island-Philippines about 500 km away was found to produce 72 transient luminous events. Besides optical images, ULF and VLF sferics of lightning from this thunderstorm were also recorded. After normalizing the sferics from the 2 August 2010 storm to a 500 km distance source, the ratio of the peak ULF and the VLF magnetic fields is found to be distinct for different types of TLE-producing lightning. The ratio for the halo-producing lightning is nearly three times that of the elve-producing lightning, but it is comparable to that of the halo-sprite-producing lightning; although the ULF strength for the halo-sprite lightning is significantly larger than that for the halo lightning. Therefore, it is possible to distinguish between the TLE-types using the ULF to VLF peak ratio or the strength of ULF/VLF band emissions of the parent lightning. Through comparing the simulated and the observed lightning radiation fields, the best fit for the lightning discharge time (dt_stroke) was found to be larger than 300 μs for the halo-producing lightning. For elve-producing lightning, the inferred lightning discharge time is about 100-200 μs.
            From analyzing the behind-the-limb elves that were recorded by ISAUL during 2011-2012, the elves generated by lightning with a SP1-inferred peak current (SP1-Ip) greater than ~150 kA are found to be associated with detectable N<sub>2</sub><sup>+</sup>1N(0,0) emissions, which are also referred as the electron density enhancement. In this dataset, the most intense elve was generated by lightning with ~300 kA. Such a lightning will cause a maximum electron density enhancement of ~250 %. Under the assumption that the local electron density can be enhanced by the preceding elve, the N<sub>2</sub> 1P and N<sub>2</sub> LBH photon emission of follow-up elve which generated by the same lightning show a significant decrease in the brightness for the upper part and a significant increase for the lower part in comparison with the preceding elve. Also, through analyzing the ISUAL elve and the amplitude of the Japan JJI VLF transmitter signals, elve generated by lightning with a peak current greater than ~150 kA is found to produce an amplitude change in the transmitter’s VLF signals. We demonstrate that the VLF signals is sensitive to the local electron density changes that they transverse. Therefore, the changes in the VLF signals from transmitters can be used to infer the electron density enhancement due to elves or other types of TLEs.

    Chapter 1 Introduction 1 1.1 Overview of Thunderstorm Electricity 1 1.1.1 Electrical Structure of Lightning-producing Clouds 1 1.1.2 Electric Discharges from Thunderstorms 2 1.2 Overview of Transient Luminous Events 5 1.2.1 Sprites 6 1.2.2 Elves 7 1.2.3 Halo 8 1.2.4 Jets 9 1.3 Middle Atmosphere 9 1.4 Scope of This work 10 Chapter 2 The Instrument 11 2.1 ISUAL Payload on the FORMOSAT-2 11 2.1.1 Imager 11 2.1.2 Spectrophotometer 12 2.1.3 Array Photometer 16 2.2 Sferics and Radio Signal Recording Systems 17 2.3 Ground TLE optical detecting system 18 Chapter 3 ISUAL FUV Emission 19 3.1 Overview 19 3.2 Lightning FUV Emissions and the Atmospheric Absorption 21 3.3 FUV Emissions from Dim Elves 24 3.4 Under-counted Elves in the ISUAL Imager Survey 30 3.5 Multi-elves Events 34 3.6 Conclusion 35 Chapter 4 Modeling the Optical Emissions of Elves 36 4.1 Coordinate System and Current distribution 36 4.2 The Electromagnetic Field from Cloud-to-ground Lightning 39 4.3 The Optical Emission Generated by the Lightning Radiation 43 4.4 Results 49 Chapter 5 Characteristics of TLE-producing Lightning 52 5.1 The Attenuation of ULF and ELF/VLF sferics in the Earth’s Cavity 52 5.1.1 The Datasets 53 5.1.2 The SP1-inferred Lightning Peak Currents 54 5.1.3 Results 55 5.2 The Lightning Electromagnetic Field Intensity in the ULF and VLF bands 60 5.2.1 The Datasets 60 5.2.2 ULF and filered-VLF Strengths of the TLE-producing Lightning 63 5.2.3 ULF and VLF Signals of the TLE-producing Lightning 66 5.3 The Physical Meaning of the ULF/ VLF Ratio 78 5.4 Conclusion 83 Chapter 6 The Elve Associated Electron Density Enhancement and VLF Perturbations 85 6.1 Electron Enhancement Associated with Elves 85 6.1.1 Electron Enhancement Determined from the N<sub>2</sub><sup>+</sup> 1N(0,0) Optical Emissions 85 6.2 Brightness of the Follow-up Elve 89 6.3 Radio Waves Perturbation Associated with Elves 93 6.3.1 The Data 93 6.3.2 The Perturbations Associated with TLEs 95 6.3.3 The Recovery Time 102 Chapter 7 Summary and Future Work 111 7.1 Summary 111 7.1.1 The ISUAL FUV Emission 111 7.1.2 The Characteristics of TLE-producing Lightning 112 7.1.3 Elve-associated Electron Enhancement 113 7.2 Suggestions for Future Work 114 References 116

    Abarca, S. F., K. L. Corbosiero, and T. J. Galarneau (2010), An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth, J. Geophys. Res., 115(D18), D18206, doi:10.1029/2009JD013411.
    Adachi, T., S. A. Cummer, J. Li, Y. Takahashi, R.-R. Hsu, H.-T. Su, A. B. Chen, S. B. Mende, and H. U. Frey (2009), Estimating lightning current moment waveforms from satellite optical measurements, Geophys. Res. Lett., 36(18), L18808, doi:10.1029/2009gl039911.
    Amoruso, A., L. Crescentini, M. S. Cola, and G. Fiocco (1996), Oxygen absorption cross-section in the Herzberg continuum, J. Quant. Spectrosc. Radiat. Transfer, 56(1), 145-152.
    Bór, J. (2013), Optically perceptible characteristics of sprites observed in Central Europe in 2007–2009, J. Atmos. Sol. Terr. Phys., 92(0), 151-177, doi:10.1016/j.jastp.2012.10.008.
    Barr, R., D. L. Jones, and C. J. Rodger (2000), ELF and VLF radio waves, J. Atmos. Sol. Terr. Phys., 62(17–18), 1689-1718, doi:10.1016/S1364-6826(00)00121-8.
    Barrington-Leigh, C. (2000), Fast photometric imageing of high altitude optical flashes above thunderstorms, Ph.D. thesis, stanford university, California, USA.
    Barrington-Leigh, C. P., and U. S. Inan (1999), Elves triggered by positive and negative lightning discharges, Geophys. Res. Lett., 26, 683-686.
    Barrington-Leigh, C. P., U. S. Inan, and M. Stanley (2001), Identification of sprites and elves with intensified video and broadband array photometry, J. Geophys. Res., 106(A2), 1741-1750, doi:10.1029/2000JA000073.
    Boeck, W. L., O. H. Vaughan, Jr., R. Blakeslee, B. Vonnegut, and M. Brook (1992), Lightning induced brightening in the airglow layer, Geophys. Res. Lett., 19(2), 99-102.
    Burrows, J. P., A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal (1999), Atmospheric remote-sensing reference data from GOME-2. temperature-dependent absorption cross sections of O3 in the 231-794 nm range, J. Quant. Spectrosc. Radiat. Transfer, 61(4), 509-517, doi:10.1016/S0022-4073(98)00037-5.
    Chang, S.-C., R.-R. Hsu, S.-M. Huang, H.-T. Su, C.-L. Kuo, J.-K. Chou, L.-J. Lee, Y.-J. Wu, and A. B. Chen (2014), Characteristics of TLE-producing lightning in a coastal thunderstorm, J. Geophys. Res., 119(11), 2014JA019819, doi:10.1002/2014JA019819.
    Chang, S. C., C. L. Kuo, L. J. Lee, A. B. Chen, H. T. Su, R. R. Hsu, H. U. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2010), ISUAL far-ultraviolet events, elves, and lightning current, J. Geophys. Res., 115, A00E46, doi:10.1029/2009ja014861.
    Chapman, F. W., and R. C. V. Macario (1956), Propagation of Audio-Frequency Radio Waves to Great Distances, Nature, 177(4516), 930-933.
    Chen, A. B., et al. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi:10.1029/2008JA013101.
    Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, and L. C. Lee (2003), Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite, J. Atmos. Sol. Terr. Phys., 65(5), 647-659.
    Christian, H. J., et al. (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347.
    Cooray, V. (2003), The lightning flash, The Institution of Electrical Engineers, London, United Kngdom.
    Cooray, V., and S. Lundquist (1982), On the characteristics of some radiation fields from lightning and their possible origin in positive ground flashes, J. Geophys. Res., 87(C13), 11203-11214, doi:10.1029/JC087iC13p11203.
    Cummer, S. A. (2003), Current moment in sprite-producing lightning, J. Atmos. Sol. Terr. Phys., 65(5), 499-508, doi:10.1016/s1364-6826(02)00318-8.
    Cummer, S. A., J. Li, F. Han, G. Lu, N. Jaugey, W. A. Lyons, and T. E. Nelson (2009), Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet, Nature Geosci., 2, 617-620, doi:10.1038/NGEO607.
    Cummer, S. A., and W. A. Lyons (2005), Implications of lightning charge moment changes for sprite initiation, J. Geophys. Res., 110(A4), A04304, doi:10.1029/2004JA010812.
    Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer (1998), A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network, J. Geophys. Res., 103(D8), 9035-9044, doi:10.1029/98jd00153.
    Davies, D. K. (1983), Measurement of swarm parameters in dry air, in Theoretical Notes, edited, Westinghouse Electric Corporation, New York.
    de Mesquita, C. R., R. N. Dias, and S. Visacro (2012), Comparison of peak currents estimated by lightning location system and ground truth references obtained in Morro do Cachimbo station, Atmos. Res., 117(0), 37-44, doi:10.1016/j.atmosres.2011.07.005.
    de Miranda, F. J., O. Pinto, and M. M. F. Saba (2003), A study of the time interval between return strokes and K-changes of negative cloud-to-ground lightning flashes in Brazil, J. Atmos. Sol. Terr. Phys., 65(3), 293-297, doi:10.1016/S1364-6826(02)00313-9.
    Dwyer, J. R., and M. A. Uman (2014), The physics of lightning, Physics Reports, 534(4), 147-241, doi:10.1016/j.physrep.2013.09.004.
    Fernsler, R. F., and H. L. Rowland (1996), Models of lightning-produced sprites and elves, J. Geophys. Res., 101(D23), 29653-29662.
    Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television Image of a Large Upward Electrical Discharge Above a Thunderstorm System, Science, 249, 48-51, doi:10.1126/science.249.4964.48.
    Frey, H. U., et al. (2007), Halos generated by negative cloud-to-ground lightning, Geophys. Res. Lett., 34, L18801, doi:10.1029/2007GL030908.
    Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons (1996), Elves: Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23(16), 2157-2160, doi:10.1029/96GL01979.
    Gilmore, F. R., R. R. Laher, and P. J. Espy (1992), Franck-Condon Factors, r-Centroids, Electronic Transition Moments, and Einstein Coefficients for Many Nitrogen and Oxygen Band Systems, Journal of Physical and Chemical Reference Data, 21, 1005-1107.
    Glukhov, V. S., V. P. Pasko, and U. S. Inan (1992), Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts, J. Geophys. Res., 97, 16971.
    Goei, D., and S. A. Cummer (2005), Data Analysis for Lightning Electromagnetics, Department of Electrical and Computer Engineering.
    Gomes, C., and V. Cooray (1998), Long impulse currents associated with positive return strokes, J. Atmos. Sol. Terr. Phys., 60, 693-699.
    Greenberg, E., C. Price, Y. Yair, M. Ganot, J. Bór, and G. Sátori (2007), ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms, J. Atmos. Sol. Terr. Phys., 69(13), 1569-1586.
    Haddad, M. A., V. A. Rakov, and S. A. Cummer (2012), New measurements of lightning electric fields in Florida: Waveform characteristics, interaction with the ionosphere, and peak current estimates, J. Geophys. Res., 117(D10), D10101, doi:10.1029/2011jd017196.
    Han, F., and S. A. Cummer (2010), Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales, J. Geophys. Res., 115(A9), A09323, doi:10.1029/2010ja015437.
    Hegerberg, R., and I. D. Reid (1980), Electron drift velocities in air, Australian Journal of Physics, 33, 227-230.
    Holzworth, R. H. (1995), Quasistatic electromagnetic phenomena in the atmosphere and ionosphere, in Handbook of atmospheric electrodynamics, edited by H. Volland, CRC press.
    Hu, W., S. A. Cummer, W. A. Lyons, and T. E. Nelson (2002), Lightning charge moment changes for the initiation of sprites, Geophys. Res. Lett., 29(8), 120-121-120-124, doi:10.1029/2001GL014593.
    Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong (1999), Criteria for sprites and elves based on Schumann resonance observations, J. Geophys. Res., 104, 16943-16964.
    Huang, S.-M., R.-R. Hsu, L.-J. Lee, H.-T. Su, C.-L. Kuo, C.-C. Wu, J.-K. Chou, S.-C. Chang, Y.-J. Wu, and A. B. Chen (2012), Optical and radio signatures of negative gigantic jets: Cases from Typhoon Lionrock (2010), J. Geophys. Res., 117(A8), A08307, doi:10.1029/2012ja017600.
    Hutchins, M. L., R. H. Holzworth, C. J. Rodger, and J. B. Brundell (2012), Far-Field Power of Lightning Strokes as Measured by the World Wide Lightning Location Network, J. Atmos. Oceanic Tech., 29(8), 1102-1110, doi:10.1175/JTECH-D-11-00174.1.
    Inan, U., T. Bell, and J. Rodriguez (1991), Heating and Ionization of the Lower Ionosphere by Lightning, Geophys. Res. Lett., 18(4), 705-708.
    Inan, U. S., C. Barrington-Leigh, S. Hansen, V. S. Glukhov, T. F. Bell, and R. Rairden (1997), Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as `elves', Geophys. Res. Lett., 24, 583-586.
    Inan, U. S., W. A. Sampson, and Y. N. Taranenko (1996), Space-time structure of optical flashes and ionization changes produced by lighting-EMP, Geophys. Res. Lett., 23, 133-136.
    Ivanov-Kholodny, G. S., and G. M. Nikolsky (1972), The sun and the ionosphere; short-wave solar radiation and its effect on the ionosphere, 366 pp., Israel Program for Scientific Translations; [available from the U.S. Dept. of Commerce, National Technical Information Service, Springfield, Va.], Jerusalem.
    Jayaratne, K. P. S. C., and V. Cooray (1994), The lightning HF radiation at 3 MHz during leader and return stroke processes J. Atmos. Terr. Phys., 56(4), 493-497, doi:doi:10.1016/0021-9169(94)90198-8.
    Jones, A. V. (1974), Aurora, D. Reidel Publishing Company, Boston, USA, doi:10.1007/978-94-010-2099-2.
    Jursa, A. S. (1985), Handbook of Geophysics and the Space Environment, 4th ed., 18-18 pp., Air Force Geophys. Lab.
    Krehbiel, P. R. (1986), The electrical structure of theunderstomrs, in The Earth's electrical environment, edited, National Academy press, Washington, D. C.
    Kuo, C.-L., R. R. Hsu, A. B. Chen, H. T. Su, L. C. Lee, S. B. Mende, H. U. Frey, H. Fukunishi, and Y. Takahashi (2005), Electric fields and electron energies inferred from the ISUAL recorded sprites, Geophys. Res. Lett., 32, doi:10.1029/2005gl023389.
    Kuo, C. L., A. B. Chen, J. K. Chou, L. Y. Tsai, R. R. Hsu, H. T. Su, H. U. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2008), Radiative emission and energy deposition in transient luminous events, J. Phys. D: Appl. Phys., 41(23), 234014, doi:10.1088/0022-3727/41/23/234014.
    Kuo, C. L., et al. (2007), Modeling elves observed by FORMOSAT-2 satellite, J. Geophys. Res., 112, 11312, doi:10.1029/2007JA012407.
    Kuo, C. L., et al. (2009), Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets, J. Geophys. Res., 114, 04314.
    Li, J., S. Cummer, G. Lu, and L. Zigoneanu (2012), Charge moment change and lightning-driven electric fields associated with negative sprites and halos, J. Geophys. Res., 117(A9), A09310, doi:10.1029/2012ja017731.
    Liu, N., et al. (2006), Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT-2 satellite, Geophys. Res. Lett., 33, 01101.
    Liu, N., V. P. Pasko, H. U. Frey, S. B. Mende, H.-T. Su, A. B. Chen, R.-R. Hsu, and L.-C. Lee (2009), Assessment of sprite initiating electric fields and quenching altitude of a1Πg state of N2 using sprite streamer modeling and ISUAL spectrophotometric measurements, J. Geophys. Res., 114(A3), doi:10.1029/2008JA013735.
    Lu, G., S. A. Cummer, J. Li, F. Han, D. M. Smith, and B. W. Grefenstette (2011), Characteristics of broadband lightning emissions associated with terrestrial gamma ray flashes, J. Geophys. Res., 116(A3), A03316, doi:10.1029/2010ja016141.
    Luque, A., and F. J. Gordillo-Vazquez (2012), Mesospheric electric breakdown and delayed sprite ignition caused by electron detachment, Nature Geosci, 5(1), 22-25, doi:10.1038/ngeo1314.
    Marinelli, W. J., W. J. Kessler, B. D. Green, and W. A. M. Blumberg (1989), Quenching of N2(a1Pg,n'=0) by N2, O2, CO, CO2, CH4, H2, and Ar, J. Chem. Phys., 90(4), 2167-2173.
    Marshall, R. A., U. S. Inan, and T. W. Chevalier (2008), Early VLF perturbations caused by lightning EMP-driven dissociative attachment, Geophys. Res. Lett., 35(L21807).
    Mende, S. B., H. U. Frey, R. R. Hsu, H. T. Su, A. B. Chen, L. C. Lee, D. D. Sentman, Y. Takahashi, and H. Fukunishi (2005), D region ionization by lightning-induced electromagnetic pulses, J. Geophys. Res., 110, 11312.
    Minschwaner, K., G. P. Anderson, L. A. Hall, and K. Yoshino (1992), Polynomial coefficients for calculating O2 Schumann-Runge cross sections at 0.5 cm-1 resolution, J. Geophys. Res., 97(D9), 10,103-110,108.
    Mitra, A. P. (1975), D-region in disturbed conditions, including flares and energetic particles, J. Atmos. Terr. Phys., 37(6–7), 895-913, doi:10.1016/0021-9169(75)90005-7.
    Molina, L. T., and M. J. Molina (1986), Absolute Absorption Cross Sections of Ozone in the 185- to 350-nm Wavelength Range, J. Geophys. Res., 91(D13), 14,501-514,508.
    Moore, C. B., K. B. Eack, G. D. Aulich, and W. Rison (2001), Energetic radiation associated with lightning stepped-leaders, Geophys. Res. Lett., 28(11), 2141-2144, doi:10.1029/2001GL013140.
    Newsome, R. T., and U. S. Inan (2010), Free-running ground-based photometric array imaging of transient luminous events, J. Geophys. Res., 115(A7), A00E41, doi:10.1029/2009JA014834.
    Ogawa, T. (1995), Lightning currents, in Handbook of atmospheric electrodynamics, edited by H. Volland, CRC press.
    Orville, R. (1977), Lightning spectroscopy, in Lightning: Physics of Lightning, edited by R. H. Golde, Academic, San Diego, Calif.
    Orville, R. E. (1991), Calibration of a magnetic direction finding network using measured triggered lightning return stroke peak currents, J. Geophys. Res., 96(D9), 17,135-117,142, doi:10.1029/91jd00611.
    Orville, R. E., and G. R. Huffines (2001), Cloud-to-Ground Lightning in the United States: NLDN Results in the First Decade, 1989-98, Mon. Weather Rev., 129, 1179.
    Pal, S. (2013), Numerical Modelling of VLF Radio Wave Propagation through Earth-Ionosphere Waveguide and its application to Sudden Ionospheric Disturbances, phD thesis, University of Calcutta.
    Pancheshnyi, S. V., S. M. Starikovskaya, and A. Y. Starikovskii (1997), Measurements of the rates of quenching of N_2 (C^3 Π_u) and N_2^+ (B^2 Σ_u^+) states by N2, O2, and CO molecules in the afterglow plasma of a nanosecond discharge, Plasma Physics Reports, 23(7), 616-620.
    Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko (1997), Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., 102, 4529-4562.
    Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood (2002), Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416(6877), 152-154, doi:10.1038/416152a
    Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430.
    Piper, L. G. (1992), Energy transfer studies on N2(X^1 Σ_g^+,v) and N2(B^3 Π_g), The Journal of Chemical Physics, 97(1), 270-275, doi:10.1063/1.463625.
    Qin, J., S. Celestin, and V. P. Pasko (2013), Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions, J. Geophys. Res., 118(5), 2623-2638, doi:10.1029/2012JA017908.
    Qin, J., V. P. Pasko, M. G. McHarg, and H. C. Stenbaek-Nielsen (2014), Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation, Nat Commun, 5, doi:10.1038/ncomms4740.
    Rakov, V. A., and M. A. Uman (2003), Lightning physics and effects, Cambridge University Press, Cambridge, United Kingdom.
    Ralchenko, Y., et al. (2008), NIST atomic spectra database (version 3.1.5), edited, National Institute of Standards and Technology, Gaithersburg, MD.
    Ratcliffe, J. A. (1959), The magneto-ionic theory and its applications to the ionosphere, Cambridge University Press, Cambridge.
    Rowe, J. N., A. P. Mitra, A. J. Ferraro, and H. S. Lee (1974), An experimental and theoretical study of the D-region—II. A semi-empirical model for mid-latitude D-region, J. Atmos. Terr. Phys., 36(5), 755-785, doi:10.1016/0021-9169(74)90023-3.
    Rudlosky, S. D., and D. T. Shea (2013), Evaluating WWLLN performance relative to TRMM/LIS, Geophys. Res. Lett., 40(10), 2344-2348, doi:10.1002/grl.50428.
    Schaal, M. M., J. R. Dwyer, Z. H. Saleh, H. K. Rassoul, J. D. Hill, D. M. Jordan, and M. A. Uman (2012), Spatial and energy distributions of X-ray emissions from leaders in natural and rocket triggered lightning, J. Geophys. Res., 117(D15), D15201, doi:10.1029/2012JD017897.
    Shao, X.-M., and A. Jacobson (2009), Model Simulation of Very Low-Frequency and Low-Frequency Lightning Signal Propagation Over Intermediate Ranges, Electromagnetic Compatibility, IEEE Transactions on, 51(3), 519-525, doi:10.1109/temc.2009.2022171.
    Shao, X.-M., E. H. Lay, and A. R. Jacobson (2013), Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm, Nature Geosci, 6(1), 29-33.
    Sipler, D. P., and M. A. Biondi (1972), Measurements of O (1D) Quenching Rates in the F Region, J. Geophys. Res., 77(31), 6202-6212.
    Stenbaek-Nielsen, H. C., R. Haaland, M. G. McHarg, B. A. Hensley, and T. Kanmae (2010), Sprite initiation altitude measured by triangulation, J. Geophys. Res., 115(A00E12), doi:10.1029/2009JA014543.
    Stenbaek-Nielsen, H. C., T. Kanmae, M. G. McHarg, and R. Haaland (2013), High-Speed Observations of Sprite Streamers, Surveys in Geophysics, 34(6), 769-795, doi:10.1007/s10712-013-9224-4.
    Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423(6943), 974-976.
    Takahashi, Y., et al. (2010), Absolute optical energy of sprites and its relationship to charge moment of parent lightning discharge based on measurement by ISUAL/AP, J. Geophys. Res., 115(A9), A00E55, doi:10.1029/2009JA014814.
    Taylor, M. J., et al. (2008), Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina, Geophys. Res. Lett., 35, 14812.
    Taylor, W. L., and K. Sao (1970), ELF Attenuation Rates and Phase Velocities Observed From Slow-Tail Components of Atmospherics, Radio Sci., 5(12), 1453-1460, doi:10.1029/RS005i012p01453.
    Uman, M. A., D. K. McLain, and E. P. Krider (1975), The Electromagnetic Radiation from a Finite Antenna, Am. J. Phys., 43(1), 33.
    van der Velde, O. A., Á. Mika, S. Soula, C. Haldoupis, T. Neubert, and U. S. Inan (2006), Observations of the relationship between sprite morphology and in-cloud lightning processes, J. Geophys. Res., 111(D15), D15203, doi:10.1029/2005JD006879.
    Veronis, G., V. P. Pasko, and U. S. Inan (1999), Characteristics of mesospheric optical emissions produced by lighting discharges, J. Geophys. Res., 104, 12645-12656.
    Vladimir A. Rakov, M. A. U. (2003), Lightning :physics and effects, Cambridge University Press, Cambridge, U.K.
    Wacker, R., and R. Orville (1999), Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade 2. Theory, J. Geophys. Res., 104(D2), 2159-2162.
    Wait, J. (1958), A study of VLF field strength data: Both old and new, Geofisica Pura e Applicata, 41(1), 73-85, doi:10.1007/BF01981861.
    Wait, J. R., and K. P. Spies (1964), Characteristics of the earth-ionosphere waveguide for VLF radio waves, NBS/NIST Technical Notes, USA.
    Wakai, N., N. Kurihara, and A. Otsuka (2004), Numerical method for calculating LF sky-wave, ground-wave and their resultant wave field strengths, Electronics Letters, 40(5), 288-290.
    Wescott, E. M., D. Sentman, D. Osborne, D. Hampton, and M. Heavner (1995), Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets, Geophys. Res. Lett., 22, 1209-1212.
    Willett, J. C., J. C. Bailey, V. P. Idone, A. Eybert-Berard, and L. Barret (1989), Submicrosecond intercomparison of radiation fields and currents in triggered lightning return strokes based on the transmission-line model, J. Geophys. Res., 94(D11), 13275-13286, doi:10.1029/JD094iD11p13275.
    Willett, J. C., J. C. Bailey, C. Leteinturier, and E. P. Krider (1990), Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz, J. Geophys. Res., 95(D12), 20367-20387, doi:10.1029/JD095iD12p20367.
    Williams, E., E. Downes, R. Boldi, W. Lyons, and S. Heckman (2007), Polarity asymmetry of sprite-producing lightning: A paradox?, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488.
    Williams, E., et al. (2012), Resolution of the sprite polarity paradox: The role of halos, Radio Sci., 47(2), RS2002, doi:10.1029/2011rs004794.
    Yaniv, R., Y. Yair, C. Price, J. z. Bór, M. Sato, Y. Hobara, S. Cummer, J. Li, and A. Devir (2014), Ground-based observations of the relations between lightning charge-moment-change and the physical and optical properties of column sprites, J. Atmos. Sol. Terr. Phys., 107(0), 60-67, doi:10.1016/j.jastp.2013.10.018.
    Yoshino, K., J. R. Esmond, A. S. C. Cheung, D. E. Freeman, and W. H. Parkinson (1992), High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2, Planet. Space Sci., 40(2-3), 185-192.

    下載圖示 校內:2017-09-11公開
    校外:2017-09-11公開
    QR CODE