簡易檢索 / 詳目顯示

研究生: 楊濠
Yang, Hao
論文名稱: 磁電彈材料之界面角分析
Interface Corners of Magneto-Electro-Elastic Materials
指導教授: 胡潛濱
Hwu, Chyanbin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 磁電彈材料史磋方程應力強度因子H積分
外文關鍵詞: Magneto-Electirc-Elastic Materials, Stroh Formalism, Stress intensity factor, H-integral
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將彈性材料的材料組成律、應變位移關係式、平衡方程式延伸到磁電彈材料,推導出磁電彈的史磋方程,在界面角結構上,依照材料性質、幾何形狀、不同的邊界條件,我們可以得到應力奇異階次,再求出界面角尖端近場解,配合新的應力強度因子定義式,藉由H積分真實解和輔助解且與積分路徑獨立的特性,最後可以求出應力強度因子。

    The constitutive law, strain-displacement relation and equilibrium equation of elastic materials can be extended to cover the magneto-electric-elastic materials. We developed a Stroh-like formalism of magneto-electric- elastic materials. Singular orders of interface corners can be determined by material properties, geometry, and boundary conditions.
    We developed the near-tip solutions and introduced a new definition of stress intensity factors. In order to avoid the problem of stress singularity around the tip of interface corner, the path-independent H-integral is suggested to overcome the problem. The integral contains two systems: one is the actual system; the other is auxiliary system. It has been proved that H-integral is an efficient and accurate method to calculate the stress intensity factors.

    摘要 i Abstract ii 誌謝 iii 表目錄 vii 圖目錄 viii 使用符號表 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 第二章 磁電彈材料的界面角 4 2.1磁電彈材料類史磋公式 4 2.3複合楔形板近尖端場解 8 第三章 應力奇異階次 10 3.1磁電彈材料之應力奇異性 10 3.2穆勒法 11 3.3界面角近尖端場解 12 第四章 應力強度因子 16 4.1應力強度因子定義式 16 4.2 H積分 18 4.3磁電彈材料問題 19 4.4壓電壓磁比擬法 20 第五章數值模擬 22 第六章結論 28 參考文獻 30

    ANSYS 13.0 Documentation: ANSYS Element Reference.
    Boomgaard, V. D., J., Terrell, D. R., Born, R. A. J., Giller, H. F. J. I., 1974."An in situ grown eutectic magnetoelectirc composite material. Part I: Composition and unidirectional solidification." Journal of Materials Science 9, pp.1705-1709.
    Daga, A., Ganesan, N., Shankar, K., 2009."Transient Dynamic Response of Cantilever Magneto-Electro-Elastic Beam Using Finite Element." International Journal of Computational Methods in Engineering Science and Mechanics10(3), pp.173-185.
    Gao, C. F., Tong, P., Zhang, T. Y., 2003."Interface crack problems in magneto-electroelastic solids." International Journal of Engineering Science 41, pp.2105-2121.
    Hsieh, M., Hwu, C., 2003"Extended Stroh-Like Formalism for Magneto-Electro-Elastic Composite Laminates." International Conference on Computational Mesomechanics associated with Development and Fabrication of Use-Specific Materials, Tokyo,Japan,pp.325-332.
    Hwu, C., Oomiya, M., Kishimoto, K., 2003. "A Key Matrix N for the Stress Singularity of the Anisotropic Elastic Composute Wedges." JSME International Journal,Series A46(1),pp.40-50.
    Hwu, C., Lee, W., 2004." Thermal Effect on the Singular Behavior of Multi-Bonded Anisotropic Wedges." Journal of Thermal Stresses 27 (2), pp. 111-136.
    Hwu, C., Kuo, T., 2007."A unified definition for stress intensity factor of interface corners and cracks." International Journal of Solids and Structures 44, pp.6340-6459.
    Hwu, C., Kuo, T., 2010. "Interface Corners in Piezoelectric Materials." Acta Mechanic214,pp,95-110.
    Hwu, C. Anisotropic Elastic Plates, Springer, New York, 2010.
    Hwu, C., Huang, H., 2012."Investigation of the Stress Intensity Factors for Interface Corners." Engineering Fracture Mechanics93,pp. 204-224.
    Hwu, C., 2012."Matrix Form Near Tip Solutions of Interface Corners."International Journal of Fracture176,pp.1 -16.
    Kida, K., Tanabe, H., Okano, H., 2008."Changes in magnetic flux density around fatigue crack tips." Fatigue Fracture Engineering Mater Structures 32, pp.180-188.
    Milazzo, A., Orlando, C., Alaimo A., 2009."An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem." Smart Mater. Structures18,085012.
    Van Run, A. M. J. G., Terrell, D. R., Scholing, J. H., 1974."An in situ grown eutectic magnetoelectirc composite material. Part II: Physical properties." Journal of Materials Science9, pp.1710-1714.
    Rice, J., 1988."Elastic Fracture Mechanics Concepts for Interfacial Cracks." ASME Journal of Applied Mechanics55, pp.98-103.
    Sokolnikoff, I., 1956. Mathematical Theory of Elasticity, 2nd ed. New York: MacGraw Hill. Suchtelen, V. J., 1972."Product properties: a new application of composite materials." Philips Research Reports 27, pp.28-37.
    Suchtelen, V. J., 1972."Product properties: a new application of composite materials." Philips Research Reports 27, pp.28-37.
    Sih, G. C., Song, Z. F., 2003." Magnetic and electric poling effects associated with crack growth in - composite." Theoretical and Applied Fracture Mechanics 39, pp.209-227.
    Ting, T. C. T., 1996. Anisotropic Elasticity: Theory and Application. New York: Oxford Science Publicaitions.
    Wang, B. L., Mai Y. W., 2003."Crack tip field in piezoelectric / piezomagnetic media." Eur. J. Mech. A/Solids 22, pp. 591-602.
    Zhou, Z. G., Wu, L.Z., Wang, B., 2005"A closed form solution of a crack in maganeto-electro-elastic composite under anti-plane shear stress loading." JSME International Journal, Series A, 48(3),pp.151-154.
    劉晉奇,“含界面裂紋之雙磁電彈械形結構反平面破壞分析”,博士論文,國立成功大學機械工程研究所,2005.
    詹育儒,“任意方向裂紋的磁壓電材料分析”,碩士論文,國立成功大學機械工程研究所,2006.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE