| 研究生: |
莊矞棠 Zhuang, Yu-Yang |
|---|---|
| 論文名稱: |
開放系統下量子邏輯閘之最佳化過程斷層掃瞄解析控制 Optimal Quantum-Process-Tomography Control of Quantum Logic Gate In Open Systems |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 量子計算 、量子最佳化控制 、糾纏邏輯閘 |
| 外文關鍵詞: | quantum computation, quantum information, nitrogen-vacancy center, entangling gates |
| 相關次數: | 點閱:218 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討在封閉系統或開放系統環境下多量子位元的量子最佳化控制都是現今量子計算中重要的一環。隨著子系統數目的增加,在開放式環境的影響下系統複雜性隨之提高,而現今普遍用來檢測量子邏輯閘之最佳化控制優劣的工具並不夠嚴謹,隨著量子系統維度不斷地擴大,多量子位元系統的量子狀態保真度準確性將更加不客觀。本文以多個氮原子空缺中心為一個多體系統,來模擬量子邏輯閘控制最佳化的問題,並在動態過程中加入了馬可夫近似下的耗散影響,實現在開放系統之2至4個量子位元的糾纏邏輯閘操作。另外在4個氮原子空缺中心將2個空缺設定為假想環境,以這樣的模式完成非馬可夫動態過程下的邏輯閘操作。本論文以量子過程斷層解析搭配快速收斂疊代演算法模擬二量子位元、三量子位元與四量子位元的糾纏邏輯閘之操作。
The quantum optimal control of a multi-qubit system is one of central tasks of both quantum computation and quantum information. The complexity of particle interaction and environment coupling increases with the number of subsystems in open systems, as a detect tool to direct accurate logic gates, optimal control theory is popular, but it is lenient. In this paper, we construction physics model multi-systems on nitrogen-vacancy center, to simulate numerical computation of quantum logic gates of optimal control. We have presented faithful manipulations of quantum gates in Markovian approximation environments and then applied to the non-Markovian dynamics of independent qubits. The implementations of two-qubit, three-qubit and four-qubit, entangling gates by quantum process tomography optimal control technique.
[1] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum in-formation: Cambridge University Press, 2010.
[2] M. Reid, P. Drummond, W. Bowen, E. G. Cavalcanti, P. Lam, H. Bachor, et al., "Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications," Reviews of Modern Physics, vol. 81, 1727, 2009.
[3] H. Buhrman, R. Cleve, and W. Van Dam, "Quantum entanglement and communication complexity," SIAM Journal on Computing, vol. 30, pp. 1829-1841, 2001.
[4] D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, "Observation of three-photon Greenberger-Horne-Zeilinger entangle-ment," Physical Review Letters, vol. 82, pp. 1345-1349, 1999.
[5] G. K. Brennen, "An observable measure of entanglement for pure states of multi-qubit systems," Quantum Information and Computation, vol. 3, pp. 619-626, 2003.
[6] D. A. Meyer and N. R. Wallach, "Global entanglement in multiparticle systems," Journal of Mathematical Physics, vol. 43, pp. 4273-4278, 2002.
[7] C. F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G. P. T. Lancaster, "Control and measurement of three-qubit entangled states," Science, vol. 304, pp. 1478-1480, 2004.
[8] C. Simon and J. Kempe, "Robustness of multiparty entanglement," Physi-cal Review A, vol. 65, 052327, 2002.
[9] G. Vidal and R. F. Werner, "Computable measure of entanglement," Phys-ical Review A, vol. 65, 032314, 2002.
[10] U. Weiss, Quantum Dissipative Systems, World Scientific, 1999.
[11] C. H. Bennett and D. P. DiVincenzo, "Quantum information and computa-tion," Nature, vol. 404, pp. 247-255, 2000.
[12] F. Platzer, F. Mintert, and A. Buchleitner, "Optimal dynamical control of many-body entanglement," Physical Review Letters, vol. 105, 020501, 2010.
[13] S. Mancini and H. M. Wiseman, "Optimal control of entanglement via quantum feedback," Physical Review A, vol. 75, 012330, 2007.
[14] M. P. A. Branderhorst, P. Londero, P. Wasylczyk, C. Brif, R. L. Kosut, H. Rabitz, "Coherent control of decoherence," Science, vol. 320, pp. 638-643, 2008.
[15] N. Khaneja, R. Brockett, and S. J. Glaser, "Time optimal control in spin systems," Physical Review A, vol. 63, 032308, 2001.
[16] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, and S. J. Glaser, "Optimal control of coupled spin dynamics: design of NMR pulse se-quences by gradient ascent algorithms," Journal of Magnetic Resonance, vol. 172, pp. 296-305, 2005.
[17] T. Kennedy, J. Colton, J. Butler, R. Linares, and P. Doering, "Long cohe-rence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition," Applied Physics Letters, vol. 83, pp. 4190-4192, 2003.
[18] R. Wu, I. R. Sola, and H. Rabitz, "Optimal quantum control with mul-ti-polarization fields," Chemical Physics Letters, vol. 400, pp. 469-475, 2004.
[19] F. F. Floether, P. de Fouquieres, and S. G. Schirmer, "Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics," New Journal of Physics, vol. 14, 073023, 2012.
[20] D. Dong and I. R. Petersen, "Quantum control theory and applications: a survey," Control Theory & Applications, IET, vol. 4, pp. 2651-2671, 2010.
[21] M. Grace, C. Brif, H. Rabitz, I. A. Walmsley, R. L. Kosut, and D. A. Lidar, "Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles," Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 40, S103, 2007.
[22] R.-B. Wu and H. Rabitz, "Control landscapes for open system quantum operations," Journal of Physics A: Mathematical and Theoretical, vol. 45, 485303, 2012.
[23] R. Kosloff, "Time-dependent quantum-mechanical methods for molecular dynamics," The Journal of Physical Chemistry, vol. 92, pp. 2087-2100, 1988.
[24] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, "Optimal control of coupled spin dynamics: design of NMR pulse se-quences by gradient ascent algorithms," Journal of Magnetic Resonance, vol. 172, pp. 296-305, 2005.
[25] A. P. Peirce, M. A. Dahleh, and H. Rabitz, "Optimal control of quan-tum-mechanical systems: Existence, numerical approximation, and appli-cations," Physical Review A, vol. 37, 4950, 1988.
[26] S. Schirmer, M. Girardeau, and J. Leahy, "Efficient algorithm for optimal control of mixed-state quantum systems," Physical Review A, vol. 61, 012101, 1999.
[27] Y. Ohtsuki, G. Turinici, and H. Rabitz, "Generalized monotonically con-vergent algorithms for solving quantum optimal control problems," The Journal of Chemical Physics, vol. 120, pp. 5509-5517, 2004.
[28] Y. Ohtsuki, W. Zhu, and H. Rabitz, "Monotonically convergent algorithm for quantum optimal control with dissipation," The Journal of Chemical Physics, vol. 110, pp. 9825-9832, 1999.
[29] W. Zhu, J. Botina, and H. Rabitz, "Rapidly convergent iteration methods for quantum optimal control of population," The Journal of Chemical Physics, vol. 108, pp. 1953-1963, 1998.
[30] W. Zhu and H. Rabitz, "A rapid monotonically convergent iteration algo-rithm for quantum optimal control over the expectation value of a positive definite operator," The Journal of Chemical Physics, vol. 109, pp. 385-391, 1998.
[31] J.-L. Chen, C.-M. Li, C.-C. Hwang, and Y.-H. Ho, "The operations of quantum logic gates with pure and mixed initial states," The Journal of Chemical Physics, vol. 134, 134103, 2011.
[32] 傅及昌, "量子演算法之量子過程解析最佳化控制理論研究," 碩士論文, 工程科學系碩士班, 國立成功大學, 台南市, 2012.
[33] T. Monz, K. Kim, W. Hänsel, M. Riebe, A. Villar, P. Schindler, "Realization of the quantum Toffoli gate with trapped ions," Physical Review Letters, vol. 102, 040501, 2009.
[34] J. V. Neumann, Mathematical Foundations of Quantum Mechanics, Prin-ceton University Press, 1955.
[35] Y. Ohtsuki and Y. Fujimura, "Bath‐induced vibronic coherence transfer effects on femtosecond time‐resolved resonant light scattering spectra from molecules," The Journal of Chemical Physics, vol. 91, pp. 3903-3915, 1989.
[36] K. Blum, Density matrix theory and applications, Springer, 2012.
[37] G. W. Coulston and K. Bergmann, "Population transfer by stimulated Ra-man scattering with delayed pulses: Analytical results for multilevel sys-tems," The Journal of Chemical Physics, vol. 96, pp. 3467-3475, 1992.
[38] U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, "Population transfer between molecular vibrational levels by stimulated Raman scat-tering with partially overlapping laser fields. A new concept and experi-mental results," The Journal of Chemical Physics, vol. 92, pp. 5363-5376, 1990.
[39] C.-J. Cheng, C.-C. Hwang, T.-L. Liao, and G.-L. Chou, "Optimal control of quantum systems: a projection approach," Journal of Physics A: Ma-thematical and General, vol. 38, 929, 2005.
[40] J. P. Palao and R. Kosloff, "Optimal control theory for unitary transforma-tions," Physical Review A, vol. 68, 062308, 2003.
[41] V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 2nd revised and enlarged edition, Wiley-VCH, 2004.
[42] M. Tsubouchi and T. Momose, "Rovibrational wave-packet manipulation using shaped midinfrared femtosecond pulses toward quantum computa-tion: Optimization of pulse shape by a genetic algorithm," Physical Re-view A, vol. 77, 052326, 2008.
[43] K. Shioya, K. Mishima, and K. Yamashita, "Quantum computing using molecular vibrational and rotational modes," Molecular Physics, vol. 105, pp. 1283-1295, 2007.
[44] J. Zhang, C.-W. Li, R.-B. Wu, T.-J. Tarn, and X.-S. Liu, "Maximal sup-pression of decoherence in Markovian quantum systems," Journal of Physics A: Mathematical and General, vol. 38, 6587, 2005.
[45] D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe, D. W. Leung, and X. Zhou, "Universal simulation of Markovian quantum dynamics," Physical Review A, vol. 64, 062302, 2001.
[46] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, et al., "An open-system quantum simulator with trapped ions," Nature, vol. 470, pp. 486-491, 2011.
[47] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan, "Quantum feedback control and classical control theory," arXiv preprint quant-ph/9912107, 1999.
[48] T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. Glaser, "Optimal control for generating quantum gates in open dissipative systems," Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 44, 154013, 2011.
[49] J. Zhang, R.-B. Wu, C.-W. Li, T.-J. Tarn, and J.-W. Wu, "Asymptotically noise decoupling for Markovian open quantum systems," Physical Review A, vol. 75, 022324, 2007.
[50] C. Brif, R. Chakrabarti, and H. Rabitz, "Control of quantum phenomena: past, present and future," New Journal of Physics, vol. 12, 075008, 2010.
[51] M. Howard, J. Twamley, C. Wittmann, T. Gaebel, F. Jelezko, and J. Wrachtrup, "Quantum process tomography and Linblad estimation of a solid-state qubit," New Journal of Physics, vol. 8, 33, 2006.
[52] E. Wu, J. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, et al., "Room temperature triggered single-photon source in the near infrared," New Journal of Physics, vol. 9, 434, 2007.
[53] A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Von Borczyskowski, "Scanning confocal optical microscopy and magnetic re-sonance on single defect centers," Science, vol. 276, pp. 2012-2014, 1997.
[54] I. I. Vlasov, A. S. Barnard, V. G. Ralchenko, O. I. Lebedev, M. V. Kanzyuba, A. V. Saveliev, et al., "Nanodiamond Photoemitters Based on Strong Narrow‐Band Luminescence from Silicon‐Vacancy Defects," Advanced Materials, vol. 21, pp. 808-812, 2009.
[55] L. Childress, M. G. Dutt, J. Taylor, A. Zibrov, F. Jelezko, J. Wrachtrup, et al., "Coherent dynamics of coupled electron and nuclear spin qubits in diamond," Science, vol. 314, pp. 281-285, 2006.
[56] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, et al., "Ultralong spin coherence time in isotopically engi-neered diamond," Nature Materials, vol. 8, pp. 383-387, 2009.
[57] P. Cappellaro and M. D. Lukin, "Quantum correlation in disordered spin systems: Applications to magnetic sensing," Physical Review A, vol. 80, 032311, 2009.
[58] A. R. Carvalho, F. Mintert, and A. Buchleitner, "Decoherence and multi-partite entanglement," Physical Review Letters, vol. 93, 230501, 2004.
[59] B. Bellomo, R. L. Franco, and G. Compagno, "Non-Markovian effects on the dynamics of entanglement," Physical Review Letters, vol. 99, 160502, 2007.
[60] 蔡明諺, "高尺度量子資訊系統中量子過程解析之最佳化控制," 碩士論文, 工程科學系碩士班, 國立成功大學, 台南市, 2013.
[61] 倪峻傑, "耗散系統中量子邏輯閘最佳化控制之研究," 碩士論文, 工程科學系碩士班, 國立成功大學, 台南市, 2013.
[62] R. Raussendorf and H. J. Briegel, "A one-way quantum computer," Physical Review Letters, vol. 86, pp.5188-5191, 2001.
[63] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, "Experimental one-way quantum computing," Nature, vol. 434, pp. 169-176, 2005.
校內:2024-12-31公開