簡易檢索 / 詳目顯示

研究生: 魏士鈞
Wei, Shih-Chun
論文名稱: VR輔助非接觸微物件三維掃描系統之發展
Development of Virtual-Reality-Assisted Noncontact Three Dimensional Micro Object Scanning System
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: 立體視覺水平雙攝影機模型非接觸三維掃描虛擬環境輔助攝影機校正
外文關鍵詞: Stereo Vision, Binocular camera, noncontact 3D scanning, Virtual environment assisted, Camera calibration
相關次數: 點閱:108下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著重於用非接觸主動式三維掃描,首先使用平面校正棋盤對真實攝影機進行校正,再使用雙攝影機對物體分別拍攝照片抓取相同之特徵點,其特徵點利用點狀雷射輔助標記;因拍攝位置不同對於同一特徵點在影像平面中之水平方向座標產生了水平視差 (Disparity),利用其差距可以進一步使用水平雙攝影機模型,計算特徵點相對於左攝影機之三維座標點。利用虛擬攝影機之視埠矩陣 (Viewport matrix) 與投影矩陣 (Projection matrix) 相乘等同於真實攝影機之內參數,即可使用虛擬攝影機模擬拍攝虛擬物體模型輔助系統發展、雙攝影機模型驗證。測試實例含重建LEGO十字栓與自動鉛筆0.5mm筆芯,並使用GOM Inspect進行分析。

    關鍵字: 立體視覺、水平雙攝影機模型、非接觸三維掃描、虛擬環境輔助、攝影機校正

    SUMMARY
    The purpose of this research is to develop noncontact 3D scanner. In order to get camera parameters, we use planar calibration pattern as marker, then use Chang’s method to get camera parameters in Matlab. We take two pictures of the object which is marked by laser point by binocular cameras individually. Because of disparity which is horizontal coordinate difference from binocular cameras, we can use disparity to calculate object’s 3D coordinate which origin is set on left camera. Hence, 3D coordinate are built in binocular camera model. However, it is hard to prove binocular camera model in reality, because there are too many uncertainties which need to handle with. If we use virtual environment, there will be no uncertainty in it. Especially, we can times Viewport matrix and Projection matrix together which are the same with camera intrinsic parameters. According to above mentioned, we can use virtual environment to verify binocular camera model. The result is quite perfect that the distance between object and camera can be calculated precisely. The scanning test contains LEGO pin and 0.5mm pencil lead, and analysis process use GOM Inspect software.

    Key words : Stereo Vision, Binocular camera, noncontact 3D scanning, Virtual environment assisted, Camera calibration

    摘要 I Extended Abstract II 目錄 V 圖目錄 IX 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 文獻回顧 2 1-3.1 攝影機校正 2 1-3.2 時差測距式(Time of flight) 3 1-3.3 探針接觸式 4 1-3.4 運動恢復結構(Structure from motion) 4 1-3.5 商用三維掃描器 6 1-4 研究目標與方法 8 1-5 本文架構 9 第二章 相機成像原理與校正方法 10 2-1 針孔成像模型 10 2-2 攝影機校正 14 2-3 攝影機常見成像變形 18 2-3.1 徑向畸變 18 2-3.2 切向畸變 20 2-4 本章總結 21 第三章 立體視覺與虛擬場景之建立 22 3-1 立體視覺 22 3-1.1 對極幾何 23 3-1.2 基礎矩陣 24 3-2 雙攝影機計算三維座標點之方法 26 3-3 虛擬環境之建立 30 3-3.1 虛擬環境之座標轉換 30 3-3.2 模型矩陣轉換 31 3-3.3 視圖矩陣轉換 34 3-3.4 投影矩陣轉換 37 3-3.5 視埠矩陣轉換 41 3-4 虛擬與真實攝影機模型之比較 43 3-5 使用虛擬環境驗證立體視覺與三維座標計算 44 3-5.1 模擬水平攝影機模型之對極線 47 3-5.2 模擬水平攝影機模型之三維座標點計算 48 3-6 本章總結 52 第四章 三維掃描系統實現 53 4-1 攝影機與顯微鏡抉擇 53 4-1.1 FOV大小對於攝影機校正之影響 53 4-1.2 判斷攝影機校正是否成功 58 4-2 系統實現 61 4-2.1 電路設計 62 4-2.2 感測器 64 4-2.3 致動器 65 4-2.4 LabVIEW軟體運算與人機介面 71 4-3 水平攝影機系統校正 72 4-3.1 攝影機光軸與馬達XPI軸平行補償 73 4-3.2 光點形心在不同角度下拍攝偏移問題 77 4-4 掃描流程 82 4-4.1 攝影機對焦 84 4-4.2 尋找旋轉中心 85 4-4.3 旋轉掃描點 90 4-5 本章總結 91 第五章 重建物體之原理與分析 92 5-1 PLY檔案介紹 92 文件格式 92 5-2 三維模型建置 95 5-2.1 各點法向量估測 96 5-2.2 柏松表面重建 97 5-2.3 柏松碟盤採樣 98 5-3 三維座標深度測試 99 5-4 重建物體流程與分析 103 5-4.1 LEGO十字栓 104 5-4.2 自動鉛筆筆芯(0.5mm) 108 5-4.3 照射物限制與系統拍攝限制 112 5-5 本章總結 113 第六章 結論與未來展望 114 6-1 結論 114 6-2 未來展望 114 參考資料 116

    [1] R. Y. Tsai, “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,” IEEE Robotic and Automation, 1987, pp.323-344.
    [2] Z. Y. Zhang, “Flexible Camera Calibration by Viewing a Plane from Unknown Orientations,” IEEE Int. Conf. on Computer Vision, 1999, pp.666-673.
    [3] Y. Cui, “3D Shape Scanning with a Time-of-Flight Camera,” IEEE, Computer Vision and Pattern Recognition (CVPR), 2010, pp.301-325.
    [4] A. Weckenmann, “Probing systems for dimensional micro- and nano-metrology,” Measurement Science and Technology, 2006, pp.504-509.
    [5] M. J. Westoby, “Structure-from-Motion’ photogrammetry: A low-cost, 2 effective tool for geoscience applications,” Geomorphology, 2012, pp.300-314.
    [6] D. G Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, 2004, pp.91-110.
    [7] “eora 3D,”
    https://www.eora3d.com, 2018/07/10.
    [8] “Atos Core,”
    https://www.atos-core.com/cn/index.php, 2018/07/10.
    [9] S. R. Eliason, “Maximum Likehood Estmation Logic and Practice,”1993.
    [10] O. Faugeras, “Three-Dimensional Computer Vision: A Geometric Viewpoint,” MIT Press, 1993.
    [11] D. C. Brown, “Decentering distortion of lenses,” Photogrammetric Engineering, 1966, pp.444-462.
    [12] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer Vision,” Second Edition, 2004.
    [13] B. Siciliano and O. Khatib, “Springer Handbook of Robotics,” Chapter 22-Range Sensors, 2008.
    [14] “OpenGL Transformation,”
    http://www.songho.ca/opengl/gl_transform.html, 2018/04/10.
    [15] “OpenGL viewport transformation matrix,”
    http://www.thecodecrate.com/opengl-es/opengl-viewport-matrix/, 2018/04/10.
    [16] 劉俊甫, “三維模型基礎之擴增實境與微組裝之應用,”國立成功大學機械工程所碩士論文, 2017.
    [17] G. Morgan, “Precise Subpixel Disparity Measurement from Very Narrow Baseline Stereo,” IEEE Transactions on Geoscience and Remote Sensing, 2010, pp.3424-3433.
    [18] 范振唐, “光固化微型3D列印機之開發與應用,”國立成功大學機械工程所碩士論文, 2017.
    [19] J. He, R. Zhou, and Z. Hong, “Modified fast climbing search autofocus algorithm with adaptive step size searching technique for digital camera,” IEEE Transactions. Consumer Electron, 2003, pp.257-262
    [20] “PLY- Polygon File Format,”
    http://paulbourke.net/dataformats/ply/, 2018/06/13.
    [21] K. Klasing, “Comparison of Surface Normal Estimation Methods for Range Sensing Applications,” 2009, pp.3206-3211.
    [22] M. Kazhdan and H. Hoppe, “Poisson Surface Reconstruction,” Eurographics Symposium on Geometry Processing, 2006, pp.504-509.
    [23] M. Corsini, “Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes,” IEEE Transactions on Visualization and Computer Graphics, 2012, pp.914-924.
    [24] R. Birdson, “Fast Poisson Disk Sampling in Arbitary Dimensions,” ACM, 2007.
    [25] “Poisson Disk Sampling,”
    http://devmag.org.za/2009/05/03/poisson-disk-sampling/, 2018/06/19

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE