| 研究生: |
林承緯 Lin, Cheng-Wei |
|---|---|
| 論文名稱: |
氧化銦鎂薄膜電晶體光電特性及利用覆蓋層和緩衝層提升電特性之研究 Optoelectronic Properties on Indium-Magnesium-Oxide (MIO) Thin Film Transistors and Improvement by Using Cap Layer and Buffer Layer |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 薄膜電晶體 、光電晶體 、緩衝層 、覆蓋層 |
| 外文關鍵詞: | thin film transistor, phototransistor, cap layer, buffer layer |
| 相關次數: | 點閱:140 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用共濺鍍系統製備氧化銦鎂薄膜,並研製及分析電晶體和紫外光電晶體的特性。實驗的第一部分,我們沉積氧化銦鎂薄膜於玻璃基板上並藉由靶材瓦數的調整探討薄膜的特性。根據材料分析的結果顯示材料為非晶態且有良好平整的粗糙度。我們將之製造成金半金結構的紫外光檢測器,經由實驗量測的結果可以發現,當靶材氧化銦的瓦數增加時光檢測器的截止波長會有偏移的現象,在偏壓為3V下,截止波長分別是315、330、340nm,這與我們透過光透射譜分析有相同的結果。
實驗的第二部分,我們研製了電晶體及紫外光電晶體,透過靶材瓦數的調整,總共製作了九種不同參數的薄膜電晶體。其中最佳的特性表現為E元件,其場效遷移率、次臨界擺幅及電流開關比分別為8.45 cm2/Vs、0.43 V/decade, 4.1×106,接著我們也將薄膜應用於光電晶體上,發現光電晶體的特性與銦的含量有著密切的關聯,隨著銦含量的增加截止波長也從315nm紅移至340nm,從試片E可知光響應度,及紫外光對可見光之比分別為0.39 A/W和3.1×103。
最後,為了更進一步提升薄膜電晶體的各種電特性,於是我們採用兩種改善的方式。第一,我們將氧化亞銅作為覆蓋層沉積在元件上,由於氧化亞銅是電洞型態的半導體,在這種設計之下,它能夠提升其薄膜電晶體的特性跟穩定性,所量測其場效載子遷移率29.8 cm2/Vs,次臨界擺幅0.22 V/decade,電流開關比1.2×106,可以發現比起元件E有更為出色的電特性;第二,我們將原本的元件結構中分別嵌入兩種不同製程所製備的緩衝層,其中以氧化鋁為緩衝層的薄膜電晶體電特性較為優異,原因可歸因於緩衝層製備方式的不同進而影響介面品質。綜合以上兩種改善方式,可知有助於提升電晶體的特性。
In this thesis, we utilize co-sputter system to prepare amorphous indium magnesium oxide (MIO) thin film; moreover, thin film transistors (TFTs) and UV phototransistors are fabricated and analyzed. First, we deposit a-MIO thin film on the glass substrate and investigate the properties of thin film with adjusting the power of the target. The result of materials analysis show amorphous structure and smooth surface. And then we demonstrate MSM UV photodetectors. It is found that the cutoff wavelength of the phototransistors can shift by changing the RF sputter power of the In2O3 target. With 3 V applied bias, it is found that measured cutoff wavelength are 315 nm, 330 nm, 340 nm, respectively. We have same results compared with the transmission spectrum analysis.
In the second part of the experiment, the fabrication of thin film transistors and UV phototransistors are demonstrated by changing the power of targets. In our experiment, we totally realize nine different parameters of thin film transistors. The optimized device, sample E, exhibits the great properties with a μFE of 8.45 cm2/Vs, a SS of 0.43 V/decade, and an on/off current ratio of 4.1×106. And then we apply a-MIO thin film to the thin film transistors, it is found that the performance of the phototransistors are strongly dependent on the In2O3. The cutoff wavelength of the phototransistors is red-shift from 315 nm to 340 nm. The photo-responsivity and DUV-to-visible rejection ratio of the fabricated are 0.39 A/W and 3.1×103.
At last, to further enhance the various electrical properties of thin film transistors, so we use two ways to improve. First, because the cuprous oxide is p-type semiconductor then we deposit it on the thin film transistors to be the cap layer. In this design, it is found that thin film transistors is enhanced for electrical properties and stability and it exhibits μFE of 29.8 cm2/Vs, a SS of 0.22 V/decade, and an on/off current ratio of 1.2×106. Compared with the sample E, it is found that we can achieve higher electrical properties. Second, the fabricated of a-MIO thin film transistors is inserted respectively two different buffer layer are demonstrated, and the thin film transistors with Al2O3 buffer layer has better electrical properties. The result can be contributed to the processing method of the buffer layer affects interface quality. As mentioned above two improvement methods, we know that it can enhance thin film transistors properties efficiently.
[1] E. Fortunato, P. Barquinha, and R. Martins, "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances," Advanced Materials, vol. 24, pp. 2945-2986, Jun 2012.
[2] P. K. Weimer, F. V. Shallcross, G. Sadasiv, H. Borkan, and Merayhor.L, "Integrated Circuits Incorporating Thin-Film Active + Passive Elements," Proceedings of the Ieee, vol. 52, pp. 1479-&, 1964.
[3] P. G. Lecomber, W. E. Spear, and A. Ghaith, "Amorphous-Silicon Field-Effect Device and Possible Application," Electronics Letters, vol. 15, pp. 179-181, 1979.
[4] A. R. Moore, "Electron and Hole Drift Mobility in Amorphous Silicon," Applied Physics Letters, vol. 31, pp. 762-764, 1977.
[5] M. Matsui, Y. Shiraki, Y. Katayama, K. L. I. Kobayashi, A. Shintani, and E. Maruyama, "Polycrystalline-Silicon Thin-Film Transistors on Glass," Applied Physics Letters, vol. 37, pp. 936-937, 1980.
[6] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors," Nature, vol. 432, pp. 488-492, Nov 2004.
[7] T. Miyasako, M. Senoo, and E. Tokumitsu, "Ferroelectric-Gate Thin-Film Transistors Using Indium-Tin-Oxide Channel with Large Charge Controllability," Applied Physics Letters, vol. 86, p. 3, Apr 2005.
[8] W. C. Germs, W. H. Adriaans, A. K. Tripathi, W. S. C. Roelofs, B. Cobb, R. A. J. Janssen, et al., "Charge Transport in Amorphous InGaZnO Thin-Film Transistors," Physical Review B, vol. 86, p. 8, Oct 2012.
[9] S. Aikawa, P. Darmawan, K. Yanagisawa, T. Nabatame, Y. Abe, and K. Tsukagoshi, "Thin-Film Transistors Fabricated by Low-Temperature Process Based on Ga- And Zn-Free Amorphous Oxide Semiconductor," Applied Physics Letters, vol. 102, p. 4, Mar 2013.
[10] S. Aikawa, T. Nabatame, and K. Tsukagoshi, "Effects of Dopants in InOx-Based Amorphous Oxide Semiconductors for Thin-Film Transistor Applications," Applied Physics Letters, vol. 103, p. 5, Oct 2013.
[11] M. Mativenga, M. H. Choi, J. W. Choi, and J. Jang, "Transparent Flexible Circuits Based on Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors," Ieee Electron Device Letters, vol. 32, pp. 170-172, Feb 2011.
[12] M. A. Khan, U. S. Bhansali, X. X. Zhang, M. M. Saleh, I. Odeh, and H. N. Alshareef, "Doped Polymer Electrodes for High Performance Ferroelectric Capacitors on Plastic Substrates," Applied Physics Letters, vol. 101, p. 5, Oct 2012.
[13] E. Monroy, F. Omnes, and F. Calle, "Wide-Bandgap Semiconductor Ultraviolet Photodetectors," Semiconductor Science and Technology, vol. 18, pp. R33-R51, Apr 2003.
[14] J. S. Park, K. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, "Novel Zrinzno Thin-Film Transistor with Excellent Stability," Advanced Materials, vol. 21, pp. 329-333, Jan 2009.
[15] J. J. Jia, Y. Torigoshi, E. Kawashima, F. Utsuno, K. Yano, and Y. Shigesato, "Amorphous Indium-Tin-Zinc Oxide Films Deposited by Magnetron Sputtering with Various Reactive Gases: Spatial Distribution of Thin Film Transistor Performance," Applied Physics Letters, vol. 106, p. 5, Jan 2015.
[16] N. C. Su, S. J. Wang, and A. Chin, "High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric," Ieee Electron Device Letters, vol. 30, pp. 1317-1319, Dec 2009.
[17] T. Kamiya and H. Hosono, "Material Characteristics and Applications of Transparent Amorphous Oxide Semiconductors," Npg Asia Materials, vol. 2, pp. 15-22, Jan 2010.
[18] D. L. Jiang, L. Li, H. Y. Chen, H. Gao, Q. Qiao, Z. K. Xu, et al., "Realization of Unbiased Photoresponse in Amorphous InGaZnO Ultraviolet Detector Via A Hole-Trapping Process," Applied Physics Letters, vol. 106, p. 5, Apr 2015.
[19] S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vispute, and T. Venkatesan, "Observation of Resonant Tunneling Action in ZnO/Zn0.8Mg0.2O Devices," Solid-State Electronics, vol. 46, pp. 1633-1637, Oct 2002.
[20] H. Shen, C. X. Shan, B. H. Li, B. Xuan, and D. Z. Shen, "Reliable Self-Powered Highly Spectrum-Selective ZnO Ultraviolet Photodetectors," Applied Physics Letters, vol. 103, p. 4, Dec 2013.
[21] M. Wraback, H. Shen, S. Liang, C. R. Goria, and Y. Lu, "High Contrast, Ultrafast Optically Addressed Ultraviolet Light Modulator Based Upon Optical Anisotropy in ZnO Films Grown on R-Plane Sapphire," Applied Physics Letters, vol. 74, pp. 507-509, Jan 1999.
[22] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, et al., "Improved Solar-Blind Detectivity Using an AlxGa1-XN Heterojunction P-I-N Photodiode," Applied Physics Letters, vol. 80, pp. 3754-3756, May 2002.
[23] T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita, and Y. Horikoshi, "ZnO MSM Photodetectors with Ru Contact Electrodes," Journal of Crystal Growth, vol. 281, pp. 513-517, Aug 2005.
[24] A. Osinsky, S. Gangopadhyay, B. W. Lim, M. Z. Anwar, M. A. Khan, D. V. Kuksenkov, et al., "Schottky Barrier Photodetectors Based on AlGaN," Applied Physics Letters, vol. 72, pp. 742-744, Feb 1998.
[25] G. Chaji, A. Nathan, and Q. Pankhurst, "Merged Phototransistor Pixel with Enhanced Near Infrared Response and Flicker Noise Reduction for Biomolecular Imaging," Applied Physics Letters, vol. 93, p. 3, Nov 2008.
[26] B. S. Wu, C. Y. Chang, Y. Y. Fang, and R. H. Lee, "Amorphous-Silicon Phototransistor on a Glass Substrate," Ieee Transactions on Electron Devices, vol. 32, pp. 2192-2916, 1985.
[27] W. L. Huang, B. C. Yang, J. Sun, B. Liu, J. L. Yang, Y. P. Zou, et al., "Organic Field-Effect Transistor and Its Photoresponse Using a Benzo 1,2-B: 4,5-B ' Difuran-Based Donor-Acceptor Conjugated Polymer," Organic Electronics, vol. 15, pp. 1050-1055, May 2014.
[28] H. Hosono, "Ionic Amorphous Oxide Semiconductors: Material Design, Carrier Transport, and Device Application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, Jun 2006.
[29] B. P. Gila, J. Kim, B. Luo, A. Onstine, W. Johnson, F. Ren, et al., "Advantages and Limitations of MgO as a Dielectric for GaN," Solid-State Electronics, vol. 47, pp. 2139-2142, Dec 2003.
[30] L. Yan, C. M. Lopez, R. P. Shrestha, E. A. Irene, A. A. Suvorova, and M. Saunders, "Magnesium Oxide as a Candidate High-Kappa Gate Dielectric," Applied Physics Letters, vol. 88, p. 3, Apr 2006.
[31] W. Zhao, X. Dong, L. Zhao, Z. F. Shi, J. Wang, H. Wang, et al., "ZnO-Based Transparent Thin-Film Transistors with MgO Gate Dielectric Grown by In-Situ MOCVD," Chinese Physics Letters, vol. 27, p. 3, Dec 2010.
[32] W. Y. Chen, J. S. Jeng, and J. S. Chen, "Improvement of Mobility in ZnO Thin Film Transistor with an Oxygen Enriched MgO Gate Dielectric," Ecs Solid State Letters, vol. 1, pp. N17-N19, 2012.
[33] J. Y. Li, S. P. Chang, H. H. Lin, and S. J. Chang, "High Responsivity MgxZn1-XO Film UV Photodetector Grown by RF Sputtering," Ieee Photonics Technology Letters, vol. 27, pp. 978-981, May 2015.
[34] H. Y. Lee, M. Y. Wang, K. J. Chang, and W. J. Lin, "Ultraviolet Photodetector Based on MgxZn1-XO Thin Films Deposited by Radio Frequency Magnetron Sputtering," Ieee Photonics Technology Letters, vol. 20, pp. 2108-2110, Nov-Dec 2008.
[35] H. L. Lu, X. B. Bi, S. D. Zhang, and H. Zhou, "Ultraviolet Detecting Properties of Amorphous MgInO Thin Film Phototransistors," Semiconductor Science and Technology, vol. 30, p. 6, Dec 2015.
[36] R. L. Weiher, "Electrical Properties of Single Crystals of Indium Oxide," Journal of Applied Physics, vol. 33, pp. 2834-&, 1962.
[37] Y. S. Li, J. Xu, J. F. Chao, D. Chen, S. X. Ouyang, J. H. Ye, et al., "High-Aspect-Ratio Single-Crystalline Porous In2O3 Nanobelts with Enhanced Gas Sensing Properties," Journal of Materials Chemistry, vol. 21, pp. 12852-12857, 2011.
[38] Dhananjay and C. W. Chu, "Realization of In2O3 Thin Film Transistors Through Reactive Evaporation Process," Applied Physics Letters, vol. 91, p. 3, Sep 2007.
[39] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, et al., "Transparent Thin-Film Transistors with Zinc Indium Oxide Channel Layer," Journal of Applied Physics, vol. 97, p. 5, Mar 2005.
[40] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, et al., "Combinatorial Approach to Thin-Film Transistors Using Multicomponent Semiconductor Channels: An Application to Amorphous Oxide Semiconductors in In-Ga-Zn-O System," Applied Physics Letters, vol. 90, p. 3, Jun 2007.
[41] M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, "High Performance Thin Film Transistor with Cosputtered Amorphous Zn-In-Sn-O Channel: Combinatorial Approach," Applied Physics Letters, vol. 95, p. 3, Aug 2009.
[42] H. Unno, N. Hikuma, T. Omata, N. Ueda, T. Hashimoto, and H. Kawazoe, "Preparation of MgIn2O4-X Thin-Films on Glass Substrate by Rf-Sputtering," Japanese Journal of Applied Physics Part 2-Letters, vol. 32, pp. L1260-L1262, Sep 1993.
[43] Y. Vygranenko, K. Wang, and A. Nathan, "Stable Indium Oxide Thin-Film Transistors with Fast Threshold Voltage Recovery," Applied Physics Letters, vol. 91, p. 3, Dec 2007.
[44] G. H. Kim, W. H. Jeong, B. Du Ahn, H. S. Shin, H. J. Kim, H. J. Kim, et al., "Investigation of the Effects of Mg Incorporation into InZnO for High-Performance and High-Stability Solution-Processed Thin Film Transistors," Applied Physics Letters, vol. 96, p. 3, Apr 2010.
[45] R. Ghosh and D. Basak, "Composition Dependent Ultraviolet Photoresponse in MgxZn1-XO Thin Films," Journal of Applied Physics, vol. 101, p. 6, Jun 2007.
[46] X. A. Zhang, J. W. Zhang, W. F. Zhang, and X. Hou, "The Fabrication and Ultraviolet Detecting Properties of ZnMgO-Based Thin Film Transistor by Laser Molecular Beam Epitaxy," Semiconductor Science and Technology, vol. 25, p. 5, Apr 2010.
[47] A. Ohtomo, S. Takagi, K. Tamura, T. Makino, Y. Segawa, H. Koinuma, et al., "Photo-Irresponsive Thin-Film Transistor with MgxZn1-XO Channel," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 45, pp. L694-L696, Jul 2006.
[48] C. Y. Tsay, M. C. Wang, and S. C. Chiang, "Characterization of Zn1-X Mg (X) O Films Prepared by the Sol-Gel Process and Their Application for Thin-Film Transistors," Journal of Electronic Materials, vol. 38, pp. 1962-1968, Sep 2009.
[49] G. W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, et al., "Suppress Temperature Instability of InGaZnO Thin Film Transistors by N2O Plasma Treatment, Including Thermal-Induced Hole Trapping Phenomenon Under Gate Bias Stress," Applied Physics Letters, vol. 100, p. 3, Apr 2012.
[50] Z. J. Tang, R. Li, and J. Yin, "Enhanced Leakage Current Properties of HfO2/Gan Gate Dielectric Stack by Introducing An Ultrathin Buffer Layer," Journal of Materials Science-Materials in Electronics, vol. 25, pp. 152-156, Jan 2014.
[51] J. Y. Kim, B. Bae, and E. J. Yun, "Effects of Post-Annealing on The Electrical Properties of Sputter-Deposited SnO Thin-Film Transistors," Science of Advanced Materials, vol. 8, pp. 272-277, Feb 2016.
[52] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky Ultraviolet Photodetectors," Journal of Crystal Growth, vol. 225, pp. 110-113, May 2001.
[53] Y. N. Hou, Z. X. Mei, H. L. Liang, C. Z. Gu, and X. L. Du, "Monolithic Color-Selective Ultraviolet (266-315 Nm) Photodetector Based on a Wurtzite MgxZn1-XO Film," Applied Physics Letters, vol. 105, p. 4, Sep 2014.
[54] S. J. Kim, S. Yoon, and H. J. Kim, "Review of Solution-Processed Oxide Thin-Film Transistors," Japanese Journal of Applied Physics, vol. 53, p. 10, Feb 2014.
[55] T. Oshima, T. Okuno, and S. Fujita, "Ga2O3 Thin Film Growth on C-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 7217-7220, Nov 2007.
[56] J. Yang, J. K. Park, S. Kim, W. Choi, S. Lee, and H. Kim, "Atomic-Layer-Deposited ZnO Thin-Film Transistors with Various Gate Dielectrics," Physica Status Solidi a-Applications and Materials Science, vol. 209, pp. 2087-2090, Oct 2012.
[57] T. T. Trinh, K. Jang, V. A. Dao, and J. Yi, "Effect Of High Conductivity Amorphous InGaZnO Active Layer on The Field Effect Mobility Improvement of Thin Film Transistors," Journal of Applied Physics, vol. 116, p. 5, Dec 2014.
[58] X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, et al., "Beta-Ga2O3/P-Si Heterojunction Solar-Blind Ultraviolet Photodetector with Enhanced Photoelectric Responsivity," Journal of Alloys and Compounds, vol. 660, pp. 136-140, Mar 2016.
[59] S. J. Chang, T. H. Chang, W. Y. Weng, C. J. Chiu, and S. P. Chang, "Amorphous InGaZnO Ultraviolet Phototransistors with a Thin Ga2O3 Layer," Ieee Journal of Selected Topics in Quantum Electronics, vol. 20, p. 5, Nov-Dec 2014.
[60] T. H. Chang, S. J. Chang, W. Y. Weng, C. J. Chiu, and C. Y. Wei, "Amorphous Indium-Gallium-Oxide UV Photodetectors," Ieee Photonics Technology Letters, vol. 27, pp. 2083-2086, Oct 2015.
[61] F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, et al., "Blueshift of Near Band Edge Emission in Mg Doped ZnO Thin Films and Aging," Journal of Applied Physics, vol. 95, pp. 4772-4776, May 2004.
[62] B. Y. Su, S. Y. Chu, Y. D. Juang, and S. Y. Liu, "Effects of Mg Doping on The Gate Bias and Thermal Stability of Solution-Processed InGaZnO Thin-Film Transistors," Journal of Alloys and Compounds, vol. 580, pp. 10-14, Dec 2013.
[63] H. C. Chiu, H. C. Wang, C. K. Lin, C. W. Chiu, J. S. Fu, K. P. Hsueh, et al., "Low Frequency Noise Analysis of Top-Gate MgZnO Thin-Film Transistor with High-Kappa ZrO2 Gate Insulator," Electrochemical and Solid State Letters, vol. 14, pp. H385-H388, 2011.
[64] C. H. Li, Y. S. Tsai, and J. Z. Chen, "Negative Bias Temperature Instability of Rf-Sputtered Mg0.05Zn0.95O Thin Film Transistors with MgO Gate Dielectrics," Semiconductor Science and Technology, vol. 26, p. 4, Oct 2011.
[65] W. J. Maeng, J. W. Lee, J. H. Lee, K. B. Chung, and J. S. Park, "Studies on Optical, Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Thin Films with Various Al Concentrations and Deposition Temperatures," Journal of Physics D-Applied Physics, vol. 44, p. 7, Nov 2011.
[66] J. F. Moulder, W. E. Stickle, P. E. Sobol, and K. D. Bamben, "Handbook of X-Ray Photoelectron Spectroscopy.," Physical Electronic, Inc, 1995.
[67] T. H. Chang, S. J. Chang, C. J. Chiu, C. Y. Wei, Y. M. Juan, and W. Y. Weng, "Bandgap-Engineered in Indium-Gallium-Oxide Ultraviolet Phototransistors," Ieee Photonics Technology Letters, vol. 27, pp. 915-918, Apr 2015.
[68] H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, and S. H. K. Park, "Photon-Accelerated Negative Bias Instability Involving Subgap States Creation in Amorphous In-Ga-Zn-O Thin Film Transistor," Applied Physics Letters, vol. 97, p. 3, Nov 2010.
[69] J. H. Kim, U. K. Kim, Y. J. Chung, J. S. Jung, S. H. Ra, H. S. Jung, et al., "The Effects of Device Geometry on the Negative Bias Temperature Instability of Hf-In-Zn-O Thin Film Transistors Under Light Illumination," Applied Physics Letters, vol. 98, p. 3, Jan 2011.
[70] K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, et al., "Effect of High-Pressure Oxygen Annealing on Negative Bias Illumination Stress-Induced Instability of InGaZnO Thin Film Transistors," Applied Physics Letters, vol. 98, p. 3, Mar 2011.
[71] J. H. Kim, U. K. Kim, Y. J. Chung, and C. S. Hwang, "Correlation Of The Change in Transfer Characteristics with The Interfacial Trap Densities of Amorphous In-Ga-Zn-O Thin Film Transistors Under Light Illumination," Applied Physics Letters, vol. 98, p. 3, Jun 2011.
[72] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, "Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure to Water," Applied Physics Letters, vol. 92, p. 3, Feb 2008.
[73] D. Stryakhilev, J. S. Park, J. Lee, T. W. Kim, Y. S. Pyo, D. B. Lee, et al., "Electrical Instability of A-In-Ga-Zn-O TFTs Biased Below Accumulation Threshold," Electrochemical and Solid State Letters, vol. 12, pp. J101-J104, 2009.
[74] P. T. Liu, Y. T. Chou, L. F. Teng, F. H. Li, and H. P. Shieh, "Nitrogenated Amorphous InGaZnO Thin Film Transistor," Applied Physics Letters, vol. 98, p. 3, Jan 2011.
[75] S. Yoon, Y. J. Tak, D. H. Yoon, U. H. Choi, J. S. Park, B. D. Ahn, et al., "Study of Nitrogen High-Pressure Annealing on InGaZnO Thin-Film Transistors," Acs Applied Materials & Interfaces, vol. 6, pp. 13496-13501, Aug 2014.
[76] J. Wu, Y. T. Chen, D. X. Zhou, Z. Hu, H. T. Xie, and C. Y. Dong, "Sputtered Oxides Used For Passivation Layers of Amorphous InGaZnO Thin Film Transistors," Materials Science in Semiconductor Processing, vol. 29, pp. 277-282, Jan 2015.
[77] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, et al., "Origin of Subthreshold Swing Improvement in Amorphous Indium Gallium Zinc Oxide Transistors," Electrochemical and Solid State Letters, vol. 11, pp. H157-H159, 2008.
[78] W. J. Maeng, J. S. Park, H. S. Kim, E. S. Kim, K. S. Son, T. S. Kim, et al., "The Effect of Active-Layer Thickness and Back-Channel Conductivity on the Subthreshold Transfer Characteristics of Hf-In-Zn-O TFTs," Ieee Electron Device Letters, vol. 32, pp. 1077-1079, Aug 2011.
[79] J. K. Yoon and J. H. Kim, "Device Analysis For A-Si : H Thin-Film Transistors with Organic Passivation Layer," Ieee Electron Device Letters, vol. 19, pp. 335-337, Sep 1998.
[80] K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, "Defect Passivation and Homogenization of Amorphous Oxide Thin-Film Transistor by Wet O(2) Annealing," Applied Physics Letters, vol. 93, p. 3, Nov 2008.
[81] Y. Ueoka, Y. Ishikawa, J. P. Bermundo, H. Yamazaki, S. Urakawa, M. Fujii, et al., "Density of States in Amorphous In-Ga-Zn-O Thin-Film Transistor under Negative Bias Illumination Stress," Ecs Journal of Solid State Science and Technology, vol. 3, pp. Q3001-Q3004, 2014.
[82] C. J. Ku, W. C. Hong, T. Mohsin, R. Li, Z. Q. Duan, and Y. C. Lu, "Improvement of Negative Bias Stress Stability in Mg0.03Zn0.97O Thin-Film Transistors," Ieee Electron Device Letters, vol. 36, pp. 914-916, Sep 2015.
[83] H. W. Zan, W. T. Chen, H. W. Hsueh, S. C. Kao, M. C. Ku, C. C. Tsai, et al., "Amorphous Indium-Gallium-Zinc-Oxide Visible-Light Phototransistor with a Polymeric Light Absorption Layer," Applied Physics Letters, vol. 97, p. 3, Nov 2010.
[84] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, "High Responsivity of Amorphous Indium Gallium Zinc Oxide Phototransistor with Ta2O5 Gate Dielectric," Applied Physics Letters, vol. 101, p. 3, Dec 2012.
[85] Y. J. Cho, J. H. Shin, S. M. Bobade, Y. B. Kim, and D. K. Choi, "Evaluation of Y2O3 Gate Insulators for a-IGZO Thin Film Transistors," Thin Solid Films, vol. 517, pp. 4115-4118, May 2009.
[86] J. S. Lee, S. Chang, S. M. Koo, and S. Y. Lee, "High-Performance a-IGZO TFT with ZrO2 Gate Dielectric Fabricated At Room Temperature," Ieee Electron Device Letters, vol. 31, pp. 225-227, Mar 2010.
[87] Z. W. Zheng and Y. C. Chen, "Improved Performances in Low-Voltage-Driven InGaZnO Thin Film Transistors Using a SiO2 Buffer Layer Insertion," Applied Physics a-Materials Science & Processing, vol. 115, pp. 937-941, Jun 2014.
[88] J. S. Park, J. K. Jeong, Y. G. Mo, and S. Kim, "Impact of High-K TiOx Dielectric on Device Performance of Indium-Gallium-Zinc Oxide Transistors," Applied Physics Letters, vol. 94, p. 3, Jan 2009.
[89] C. R. Park and J. H. Hwang, "Effect of Double-Layered Al2O3/SiO2 Dielectric Materials on In-Ga-Zn-O (IGZO)-Based Amorphous Transparent Thin Film Transistors," Ceramics International, vol. 40, pp. 12917-12922, Sep 2014.