| 研究生: |
林詩揚 Lin, Shih-Yang |
|---|---|
| 論文名稱: |
石墨烯相關系統的電子性質 Electronic properties in graphene-related systems |
| 指導教授: |
林明發
Lin, Ming-Fa |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 石墨烯 、矽烯 、第一原理 、緊束模型 |
| 外文關鍵詞: | graphene, silicene, first-principles, tight-binding |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中,我們利用第一原理計算來研究研究石墨烯相關系統以及第四族系統的幾何與電子性質,範圍包括一維邊緣綴飾石墨帶、二維的皺褶石墨烯在不同的曲率、周期、皺褶方向。不同的邊緣綴飾原子、曲度、及鋸齒狀的邊緣結構導致了石墨帶的三種幾何結構,這些結構源起於各種不同的邊界-邊界交互作用。皺褶石墨烯態密度上低能的峰與掃描穿隧能譜的實驗做比較,可以用來區分兩種不同型態的皺褶石墨烯。對應於石墨烯,矽烯在不同的氫化濃度和氫原子分部之下可以達成能隙的調控與產生不同數量的局域電子,這也提供了一個方法來指認氫濃度。另一方面,我們利用自我開發的廣義化緊束模型計算石墨烯在外加磁場之下與各種不同堆疊的石墨塊材的熱電子性質。溫度與磁場的競合效應決定了石墨烯的磁比熱,其臨界溫度與臨界磁場展現了一個簡單的線性關係。在塊材石墨中,層與層間原子的交互作用決定了電子比熱的溫度相依性。AA、AB、與ABC堆疊的石墨塊材分別展現了線性的溫度相關在高溫、中溫、與低溫的範圍。我們的計算結果也與實驗上的研究做詳細的比對,此外也得到一些嶄新的結果尚待實驗進一步驗證。
In this dissertation, we use first principle calculations to study the geometric and electronic properties in group IV graphene-related systems, ranging from one-dimension edge-decorated graphene nanoribbons to two-dimensional graphene ripples with different corrugated directions, periods, and curvatures. Various decorating atoms, different curvature angles, and the zigzag edge structure have resulted in three types of geometric structures, depending on the edge-edge interactions. The existence of low-lying peaks of densities of states can be used to distinguish specific types of graphene ripples obtained in STS experiments. As a counterpart of graphene, hydrogenated silicenes with different hydrogen configurations and concentrations lead to tunable band gaps and strong localized states at the Fermi level, providing a method to identify the hydrogen concentrations. A self-developed generalized tight-binding model is used to study the electronic thermal properties of the nanostructures from two-dimensional graphene to three-dimensional graphites with different stacking configurations. The temperature and the magnetic field compete with each to determine the specific heat of graphene, revealing a simple linear relation between critical temperature and critical magnetic field. In bulk systems, the interlayer atomic interactions dominate the temperature-dependent specific heat, exhibiting linear T dependences in low-, middle-, and high-temperature for Bernal, rhombohedral, and simple hexagonal graphites, respectively. We have paid attention to compare the calculations with the experiments and have obtained some novel features not yet verified experimentally.
Chapter 1.
[1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Science
2004; 306(5696): 666-669.
[2] Geim AK, Novoselov KS. Nature Materials 2007; 6(3): 183-191.
[3] Geim AK. Science 2009; 324(5934): 1530-1534.
[4] Kosynkin, D. V. et al. Nature 2009; 458: 872.
[5] Elias, A. L. et al. Nano Lett. 2009; 10: 366.
[6] Jiao, L. et al. Nature 2009; 458: 877.
[7] Cataldo, F. et al. Carbon 2010; 48: 2596.
[8] Shinde, D. B., Majumder, M., Pillai, V. K. Sci. Rep. 2014; 4: 4363.
[9] Ritter, K. A., Lyding, J. W. Nat. Mater. 2009; 8: 235.
[10] Son, Y. W., Cohen, M. L., Louie, S. G. Phys. Rev. Lett. 2006; 97: 216803.
[11] Chen, J. J., Wu, H. C., Yu, D., Liao, Z. M. Nanoscale 2014; 6: 8814.
[12] Lee, H. et al. Phys. Rev. B 2005; 72: 174431.
[13] Xiao, B., Ding, Y. H., Sun, C. C. Phys. Chem. Chem. Phys. 2011; 13: 2732.
[14] Karamanis, P. and Pouchan, C. J. Phys. Chem. C 2013; 117: 3134 .
[15] Kudin, K. N. ACS Nano 2008; 2: 516.
[16] Simbeck, A. J. et al. Phys. Rev. B 2013; 88: 035413.
[17] Sinitskii, A. et al. ACS Nano 2010; 4: 1949.
[18] Wu, M., Pei, Y., Zeng, X. C. J. Am. Chem. Soc. 2010; 132: 5554.
[19] Meng L, He WY, Zheng H, Liu M, Yan H, Yan W, et al. Phys. Rev. B 2013;
87(20):205405.
[20] Yan W, He WY, Chu ZD, Liu M, Meng L, Dou RF, et al. Nat. Comm. 2013; 4:2159.
[21] Capasso A, Placidi E, Zhan HF, Perfetto E, Bell JM, Gu Y, et al. Carbon 2014;
68:330-336.
[22] De Parga AV, Calleja F, Borca BMCG, Passeggi Jr MCG, Hinarejos JJ, Guinea F, et
al. Phys. Rev. Lett. 2008; 100(5):056807.
[23] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, et al. Nat. Nanotech. 2009;
4(9):562-566.
[24] Georgiou T, Britnell L, Blake P, Gorbachev RV, Gholinia A, Geim AK, et al. Appl.
Phys. Lett. 2011; 99(9):093103.
[25] Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, et al. Nano Lett. 2009; 9(7):2565-2570.
[26] Xia D, Xue Q, Xie J, Chen H, Lv C, Besenbacher F, et al. Small 2010; 6(18):2010V2019.
[27] Liu F, Song S, Xue D, Zhang H. Adv. Mater. 2012; 24(8):1089-1094.
[28] Kim K, Lee Z, Malone BD, Chan KT, Aleman B, Regan W, et al. Phys. Rev. B 2011;
83(24):245433.
[29] Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I. Nano Lett. 2008; 8(8):2277-
2282.
[30] Yan J, Liu J, Fan Z, Wei T, Zhang L. Carbon 2012; 50(6):2179-2188.
[31] Tozzini V, Pellegrini V. J. Phys. Chem. C 2011; 115(51):25523-25528.
[32] Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, et al. ACS Appl. Mater.
Interfaces 2010; 2(11):3092-3099.
[33] Guinea F, Katsnelson MI, Vozmediano MAH. Phys. Rev. B 2008; 77(7):075422.
[34] Guinea F, Horovitz B, Le Doussal P. Phys. Rev. B 2008; 77(20):205421.
[35] Guinea F, Horovitz B, Le Doussal P. Solid State Commun. 2009; 149(27):1140-1143.
[36] Vozmediano MA, Katsnelson MI, Guinea F. Phys. Rep. 2010; 496(4):109-148.
[37] Vogt, P. et al. Phys. Rev. Lett. 2012; 108: 155501.
[38] Lalmi, B. et al. Appl. Phys. Lett. 2010; 97: 233109.
[39] Aufray, B. et al. Appl. Phys. Lett. 2010, 96, 183102.
[40] Meng, L. et al. Nano Lett. 2013; 13: 685.
[41] Nakano, H., Mitsuoka, T., Harada, M., Horibuchi, K., Nozaki, H., Takahashi, N., et
al. Angew. Chem. Int. Ed. 2006; 45: 6303V6306.
[42] Okamoto, H., Kumai, Y., Sugiyama, Y., Mitsuoka, T., Nakanishi, K., Ohta, T., et al.
J. Am. Chem. Soc. 2010; 132: 2710V2718.
[43] Sugiyama, Y., Okamoto, H., Mitsuoka, T., Morikawa, T., Nakanishi, K., Ohta, T.,
Nakano, H. J. Am. Chem. Soc. 2010; 132: 5946V5947.
[44] Cahangirov, S., Topsakal, M., AktLurk, E., SMahin, H., Ciraci, S. Phys. Rev. Lett.
2009; 102: 236804.
[45] E. Gornik, R. Lassnig, and G. Strasser. Phys. Rev. Lett. 1985; 54: 1820-1823.
[46] J. K. Wang, D. C. Tsui, M. Santos, and M. Shayegan. Phys. Rev. B 1992;
45:4384V4389.
[47] V. Bayot, E. Grivei, and S. Melinte. Phys. Rev. Lett. 1996; 76: 4584-4587.
[48] V. Bayot, E. Grivei, S. Melinte, and M. Shayegan. Physica E 1997; 1: 36-41.
[49] W. Yi, L. Lu, Zhang Dian-lin, Z. W. Pan, and S. S. Xie. Phys. Rev. B 1999; 59:
R9015-R9018.
[50] V. N. Popov. Phys. Rev. B 2002; 66: 153408.
[51] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E.
Fischer. Appl. Phys. A 2002; 74: 339-343.
[52] B. J. C. van der Hoeven, Jr., and P. H. Keesom. Phys. Rev. 1963; 130: 1318-1321.
[53] S. Picard, D. T. Burns, and P. Roger. Metrologia 2007; 44: 294-302.
[54] F. Tuinstra, J. L. Koenig. J. Chem. Phys. 1970; 53: 1126.
[55] P. R. Wallace. Phys. Rev. 1947; 71: 622.
[56] I. Lobato and B. Partoens. Phys. Rev. B 2011; 83: 165429.
[57] Y. H. Ho, J. Wang, Y. H. Chiu, M. F. Lin, and W. P. Su. Phys. Rev. B 2011; 83:
121201.
[58] M. Koshino. Phys. Rev. B 2010; 81: 125304.
[59] F. L. Shyu and M. F. Lin. J. Phys. Soc. Jpn. 2000; 69: 3781.
[60] F. L. Shyu and M. F. Lin. J. Phys. Soc. Jpn. 2001; 70: 897.
[61] C. H. Ho, Y. H. Ho, Y. Y. Liao, Y. H. Chiu, C. P. Chang, M. F. Lin. J. Phys. Soc.
Jpn. 2012; 81: 024701.
[62] Y. H. Ho, Y. H. Chiu, W. P. Su, and M. F. Lin. Appl. Phys. Lett. 2011; 99: 011914.
[63] R. R. Haering. Can. J. Phys. 1958; 36: 352.
[64] J. K. Lee, S. C. Lee, J. P. Ahn, S. C. Kim, J. I. B. Wilson and P. John. J. Chem.
Phys. 2008; 129: 234709.
[65] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima. Phys. Rev. Lett. 2009; 102: 015501.
[66] J. Krumhansl and H. Brooks. J. Chem. Phys. 1953; 21: 1663.
[67] Kresse, G. and Furthmuller, J. Phys. Rev. B 1996; 54(16): 11169.
Chapter 2.
[1] Geim, AK. Graphene: status and prospects. Science 2009, 324(5934):1530-1534.
[2] Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene
nanoribbon semiconductors. Science 2008, 319(5867):1229-1232.
[3] Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour
JM. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature
2009, 458(7240):872-876.
[4] Cataldo F, Compagnini G, Patan e G, Ursini O, Angelini G, Ribic PR, at el. Graphene
nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes.
Carbon 2010, 48(9):2596-2602.
[5] Bu H, Zhao M, Wang A, Wang X. First-principles prediction of the transition from
graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons. Carbon
2013, 65:341-348.
[6] Ng TY, Yeo JJ, Liu ZS. A molecular dynamics study of the thermal conductivity of
graphene nanoribbons containing dispersed StoneVThrowerVWales defects. Carbon
2012, 50(13):4887-4893.
[7] Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E. Nanosphere Lithography for the
Fabrication of Ultranarrow Graphene Nanoribbons and On-Chip Bandgap Tuning of
Graphene. Advanced Materials 2011, 23(10):1246-1251.
[8] Lee H, Wakabayashi K, Son YW, Miyamoto Y. A single particle Hamiltonian for
electro-magnetic properties of graphene nanoribbons. Carbon 2012, 50(10):3454-3458.
[9] Nduwimana A, Wang XQ. Energy gaps in supramolecular functionalized graphene
nanoribbons. ACS nano 2009, 3(7):1995-1999.
[10] Lambin P, Amara H, Ducastelle F, Henrard L. Long-range interactions between substitutional
nitrogen dopants in graphene: electronic properties calculations. Physical
Review B 2012, 86(4):045448.
[11] Wong JH, Wu BR, Lin MF. Strain e ect on the electronic properties of single layer
and bilayer graphene. The Journal of Physical Chemistry C 2012, 116(14):8271-8277.
[12] Haskins J, K nac A, Sevik C, Sevin cli H, Cuniberti G, C a g n T. Control of thermal
and electronic transport in defect-engineered graphene nanoribbons. ACS nano 2011,
5(5):3779-3787.
[13] Wakabayashi K, Sigrist M. Zero-conductance resonances due to
ux states in
nanographite ribbon junctions. Physical review letters 2000, 84(15):3390.
[14] Tada K,Watanabe K. Ab initio study of eld emission from graphitic ribbons. Physical
review letters 2002, 88(12):127601.
[15] Xia F, Farmer DB, Lin YM, Avouris P. Graphene eld-e ect transistors with high
on/o current ratio and large transport band gap at room temperature. Nano letters
2010, 10(2):715-718.
[16] Wakabayashi K, Takane Y, Yamamoto M, Sigrist M. Edge e ect on electronic transport
properties of graphene nanoribbons and presence of perfectly conducting channel.
Carbon 2009, 47(1):124-137.
[17] Cantele G, Lee YS, Ninno D, Marzari N. Spin channels in functionalized graphene
nanoribbons. Nano letters 2009, 9(10):3425-3429.
[18] Lin CY, Chen SC,Wu JY, Lin MF. Curvature E ects on Magnetoelectronic Properties
of Nanographene Ribbons. Journal of the Physical Society of Japan 2012, 81(6):4719.
[19] Ritter KA, Lyding JW. The in
uence of edge structure on the electronic properties of
graphene quantum dots and nanoribbons. Nature materials 2009, 8(3):235-242.
[20] Son YW, Cohen ML, Louie SG. Energy gaps in graphene nanoribbons. Physical Review
Letters 2006, 97(21):216803.
[21] Lee H, Son YW, Park N, Han S, Yu J. Magnetic ordering at the edges of graphitic fragments:
Magnetic tail interactions between the edge-localized states. Physical Review
B 2005, 72(17):174431.
[22] El as AL, Botello-M endez AR, Meneses-Rodr guez D, Jehov a Gonz alez V, Ram rez-
Gonz alez D, Ci L, et al. Longitudinal cutting of pure and doped carbon nanotubes to
form graphitic nanoribbons using metal clusters as nanoscalpels. Nano letters 2009,
10(2):366-372.
[23] Dhakate SR, Chauhan N, Sharma S, Mathur RB. The production of multi-layer
graphene nanoribbons from thermally reduced unzipped multi-walled carbon nanotubes.
Carbon 2011, 49(13):4170-4178.
[24] Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from
carbon nanotubes. Nature 2009, 458(7240):877-880.
[25] Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM. Lower-defect graphene
oxide nanoribbons from multiwalled carbon nanotubes. ACS nano 2010, 4(4):2059-
2069.
[26] Jiao L, Wang X, Diankov G, Wang H, Dai H. Facile synthesis of high-quality graphene
nanoribbons. Nature nanotechnology 2010, 5(5):321-325.
[27] Cano-M arquez AG, Rodr guez-Mac as FJ, Campos-Delgado J, Espinosa-Gonz alez CG,
Trist an-L opez F, Ram rez-Gonz alez D, et al. Ex-MWNTs: Graphene sheets and ribbons
produced by lithium intercalation and exfoliation of carbon nanotubes. Nano
letters 2009, 9(4):1527-1533.
[28] Kosynkin DV, LuW, Sinitskii A, Pera G, Sun Z, Tour JM. Highly conductive graphene
nanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor. ACS
nano 2011, 5(2):968-974.
[29] Xiao B, Ding YH, Sun CC. Beryllium and boron decoration forms planar tetracoordinate
carbon strips at the edge of graphene nanoribbons. Physical Chemistry Chemical
Physics 2011, 13(7):2732-2737.
[30] Karamanis P, Pouchan C. Second-Hyperpolarizability Enhancement in Metal-
Decorated Zigzag Graphene Flakes and Ribbons: The Size E ect. The Journal of
Physical Chemistry C 2013, 117(6):3134-3140.
[31] Kudin KN. Zigzag graphene nanoribbons with saturated edges. Acs Nano 2008,
2(3):516-522.
[32] Simbeck AJ, Gu D, Kharche N, Satyam PV, Avouris P, Nayak SK. Electronic structure
of oxygen-functionalized armchair graphene nanoribbons. Physical Review B 2013,
88(3):035413.
[33] Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM. Kinetics of
diazonium functionalization of chemically converted graphene nanoribbons. ACS nano
2010, 4(4):1949-1954.
[34] Wu M, Pei Y, Zeng XC. Planar tetracoordinate carbon strips in edge decorated
graphene nanoribbon. Journal of the American Chemical Society 2010, 132(16):5554-
5555.
[35] Ouyang M, Huang JL, Cheung CL, Lieber CM. Energy gaps in" metallic" single-walled
carbon nanotubes. Science 2001, 292(5517):702-705.
[36] Kresse G, Furthmuller J. E cient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Physical Review B 1996, 54(16):11169.
[37] Robertson DH, Brenner DW, Mintmire JW. Energetics of nanoscale graphitic tubules.
Physical Review B 1992, 45(21):12592.
[38] Zhang Z, Guo W. Tunable ferromagnetic spin ordering in boron nitride nanotubes
with topological
uorine adsorption. Journal of the American Chemical Society 2009,
131(19):6874-6879.
[39] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993,
363:603- 605.
[40] Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, et al. Crystalline ropes of metallic
carbon nanotubes. Science-AAAS-Weekly Paper Edition 1996, 273(5274):483-487.
[41] Charlier JC, Amara H, Lambin P. Catalytically assisted tip growth mechanism for
single-wall carbon nanotubes. Acs Nano 2007, 1(3):202-207.
[42] Kim YH, Sim HS, Chang KJ. Electronic structure of collapsed C, BN, and BC3 nanotubes.
Current Applied Physics 2001, 1(1):39-44.
[43] Wilder JW, Venema LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of
atomically resolved carbon nanotubes. Nature 1998, 391(6662):59-62.
[44] Odom TW, Huang JL, Kim P, Lieber CM. Atomic structure and electronic properties
of single-walled carbon nanotubes. Nature 1998, 391(6662):62-64.
Chapter 3.
[1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Grigorieva MKI, Dubonos SV, et al.
Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438:197-
200.
[2] Geim AK. Graphene: status and prospects. Science 2009, 324(5934):1530-1534.
[3] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic
strength of monolayer graphene. Science 2008, 321(5887):385-388.
[4] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al.
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite
oxide. Carbon 2007, 45(7):1558-1565.
[5] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene.
Carbon 2010, 48(8):2127-2150.
[6] Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, et al. First direct
observation of a nearly ideal graphene band structure. Physical Review Letters 2009,
103(22):226803.
[7] Hwang EH, Adam S, Sarma SD. Carrier transport in two-dimensional graphene layers.
Physical Review Letters 2007, 98(18):186806.
[8] Sarma SD, Adam S, Hwang EH, Rossi E. Electronic transport in two-dimensional
graphene. Reviews of Modern Physics 2011, 83(2):407.
[9] Zhang Y, Jiang Z, Small JP, Purewal MS, Tan YW, Fazlollahi, et al. Landau-level splitting
in graphene in high magnetic elds. Physical Review Letters 2006, 96(13):136806.
[10] Checkelsky JG, Li L, Ong NP. Zero-energy state in graphene in a high magnetic eld.
Physical Review Letters 2008, 100(20):206801.
[11] Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, et al. Ultrahigh electron
mobility in suspended graphene. Solid State Communications 2008, 146(9):351-355.
[12] Wang S, Ang PK, Wang Z, Tang ALL, Thong JT, Loh KP. High mobility, printable,
and solution-processed graphene electronics. Nano Letters 2009, 10(1):92-98.
[13] Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum
Hall e ect and Berry's phase in graphene. Nature 2005, 438(7065):201-204.
[14] Gusynin VP, Sharapov SG. Unconventional integer quantum Hall e ect in graphene.
Physical Review Letters 2005, 95(14):146801.
[15] Du X, Skachko I, Duerr F, Luican A, Andrei EY. Fractional quantum Hall e ect and
insulating phase of Dirac electrons in graphene. Nature 2009, 462(7270):19.
[16] Cortijo A, Vozmediano MA. E ects of topological defects and local curvature on the
electronic properties of planar graphene. Nuclear Physics B 2007, 763(3):293-308.
[17] Lin CY, Wu JY, Chang CP, Lin MF. Magneto-optical selection rules of curved
graphene nanoribbons and carbon nanotubes. Carbon 2014, 69:151-161.
[18] Chang SL, Lin SY, Lin SK, Lee CH, Lin MF. Geometric and Electronic Properties of
Edge-decorated Graphene Nanoribbons. Scienti c Reports 2014, 4:6038.
[19] Nilsson J, Neto AC, Guinea F, Peres NMR. Electronic properties of graphene multilayers.
Physical Review Letters 2006, 97(26):266801.
[20] Avetisyan AA, Partoens B, Peeters FM. Stacking order dependent electric eld tuning
of the band gap in graphene multilayers. Physical Review B 2010, 81(11):115432.
[21] Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX. Uniaxial strain on graphene:
Raman spectroscopy study and band-gap opening. ACS Nano 2008, 2(11):2301-2305.
[22] Wong JH, Wu BR, Lin MF. Strain e ect on the electronic properties of single layer
and bilayer graphene. The Journal of Physical Chemistry C 2012, 116(14):8271-8277.
[23] Orlita M, Faugeras C, Schneider JM, Martinez G, Maude DK, Potemski M. Graphite
from the viewpoint of Landau level spectroscopy: An e ective graphene bilayer and
monolayer. Physical Review Letters 2009, 102(16):166401.
[24] Chuang YC, Wu JY, Lin MF. Electric eld dependence of excitation spectra in ABstacked
bilayer graphene. Scienti c Reports 2013, 3:1368.
[25] Wu JY, Gumbs G, Lin MF. Combined e ect of stacking and magnetic eld on plasmon
excitations in bilayer graphene. Physical Review B 2014, 89(16):165407.
[26] Fasolino A, Los JH, Katsnelson MI. Intrinsic ripples in graphene. Nature materials
2007, 6(11):858-861.
[27] Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. The structure
of suspended graphene sheets. Nature 2007, 446(7131):60-63.
[28] Meng L, He WY, Zheng H, Liu M, Yan H, Yan W, et al. Strain-induced onedimensional
Landau level quantization in corrugated graphene. Physical Review B
2013, 87(20):205405.
[29] Yan W, He WY, Chu ZD, Liu M, Meng L, Dou RF, et al. Strain and curvature
induced evolution of electronic band structures in twisted graphene bilayer. Nature
communications 2013, 4:2159.
[30] Capasso A, Placidi E, Zhan HF, Perfetto E, Bell JM, Gu Y, et al. Graphene ripples
generated by grain boundaries in highly ordered pyrolytic graphite. Carbon 2014,
68:330-336.
[31] De Parga AV, Calleja F, Borca BMCG, Passeggi Jr MCG, Hinarejos JJ, Guinea F, et
al. Periodically rippled graphene: growth and spatially resolved electronic structure.
Physical Review Letters 2008, 100(5):056807.
[32] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, et al. Controlled ripple texturing
of suspended graphene and ultrathin graphite membranes. Nature nanotechnology
2009, 4(9):562-566.
[33] Georgiou T, Britnell L, Blake P, Gorbachev RV, Gholinia A, Geim AK, et al. Graphene
bubbles with controllable curvature. Applied Physics Letters 2011, 99(9):093103.
[34] Xie X, Ju L, Feng X, Sun Y, Zhou R, Liu K, et al. Controlled fabrication of high-quality
carbon nanoscrolls from monolayer graphene. Nano Letters 2009, 9(7):2565-2570.
[35] Xia D, Xue Q, Xie J, Chen H, Lv C, Besenbacher F, et al. Fabrication of carbon
nanoscrolls from monolayer graphene. Small 2010, 6(18):2010V2019.
[36] Liu F, Song S, Xue D, Zhang H. Folded structured graphene paper for high performance
electrode materials. Advanced Materials 2012, 24(8):1089-1094.
[37] Kim K, Lee Z, Malone BD, Chan KT, Aleman B, Regan W, et al. Multiply folded
graphene. Physical Review B 2011, 83(24):245433.
[38] Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I. Large reversible Li storage of
graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters
2008, 8(8):2277-2282.
[39] Yan J, Liu J, Fan Z, Wei T, Zhang L. High-performance supercapacitor electrodes
based on highly corrugated graphene sheets. Carbon 2012, 50(6):2179-2188.
[40] Tozzini V, Pellegrini V. Reversible hydrogen storage by controlled buckling of graphene
layers. The Journal of Physical Chemistry C 2011, 115(51):25523-25528.
[41] Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, et al. Preparation of covalently
functionalized graphene using residual oxygen-containing functional groups.
ACS applied materials and interfaces 2010, 2(11):3092-3099.
[42] Guinea F, Katsnelson MI, Vozmediano MAH. Midgap states and charge inhomogeneities
in corrugated graphene. Physical Review B 2008, 77(7):075422.
[43] Guinea F, Horovitz B, Le Doussal P. Gauge eld induced by ripples in graphene.
Physical Review B 2008, 77(20):205421.
[44] Guinea F, Horovitz B, Le Doussal P. Gauge elds, ripples and wrinkles in graphene
layers. Solid State Communications 2009, 149(27):1140-1143.
[45] Vozmediano MA, Katsnelson MI, Guinea F. Gauge elds in graphene. Physics Reports
2010, 496(4):109-148.
[46] Wehling TO, Balatsky AV, Tsvelik AM, Katsnelson MI, Lichtenstein AI. Midgap states
in corrugated graphene: Ab initio calculations and e ective eld theory. Europhysics
Letters 2008, 84(1):17003.
[47] Ohta T, Bostwick A, McChesney JL, Seyller T, Horn K, Rotenberg E. Interlayer
interaction and electronic screening in multilayer graphene investigated with angleresolved
photoemission spectroscopy. Physical Review Letters 2007, 98(20):206802.
[48] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the electronic structure
of bilayer graphene. Science 2006, 313(5789):951-954.
[49] Kresse G, Furthmuller J. E cient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Physical Review B 1996, 54(16):11169.
[50] Kane CL, Mele EJ. Size, shape, and low energy electronic structure of carbon nanotubes.
Physical Review Letters 1997, 78(10):1932.
[51] Shyu FL, Lin MF. Electronic and optical properties of narrow-gap carbon nanotubes.
Journal of the Physical Society of Japan 2002, 71(8):1820-1823.
[52] Wilder JW, Venema LC, Rinzler AG, Smalley RE, Dekker C. Electronic structure of
atomically resolved carbon nanotubes. Nature 1998, 391(6662):59-62.
[53] Odom TW, Huang JL, Kim P, Lieber CM. Atomic structure and electronic properties
of single-walled carbon nanotubes. Nature 1998, 391(6662):62-64.
[54] Ouyang M, Huang JL, Cheung CL, Lieber CM. Energy gaps in" metallic" single-walled
carbon nanotubes. Science 2001, 292(5517):702-705.
Chapter 4.
[1] Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.;
Dubonos, S.; Firsov, A. nature 2005, 438, 197V200.
[2] Geim, A. K. science 2009, 324, 1530V1534.
[3] Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.;
Resta, A.; Ealet, B.; Le Lay, G. Physical review letters 2012, 108, 155501.
[4] Chen, L.; Liu, C.-C.; Feng, B.; He, X.; Cheng, P.; Ding, Z.; Meng, S.; Yao, Y.; Wu,
K. Physical review letters 2012, 109, 056804.
[5] Ohare, A.; Kusmartsev, F.; Kugel, K. Nano letters 2012, 12, 1045V1052.
[6] Feng, B.; Li, H.; Liu, C.-C.; Shao, T.-N.; Cheng, P.; Yao, Y.; Meng, S.; Chen, L.; Wu,
K. ACS nano 2013, 7, 9049V9054.
[7] Lebegue, S.; Eriksson, O. Physical Review B 2009, 79, 115409.
[8] Sprinkle, M. et al. Physical review letters 2009, 103, 226803.
[9] Lu, C.; Chang, C.-P.; Huang, Y.-C.; Chen, R.-B.; Lin, M. Physical Review B 2006,
73, 144427.
[10] Lin, S.-Y.; Chang, S.-L.; Shyu, F.-L.; Lu, J.-M.; Lin, M.-F. Carbon 2015, 86, 207V216.
[11] Huang, Y.-K.; Chen, S.-C.; Ho, Y.-H.; Lin, C.-Y.; Lin, M.-F. Scienti c reports 2014,
4 .
[12] Tabert, C. J.; Nicol, E. J. Physical review letters 2013, 110, 197402.
[13] Stille, L.; Tabert, C. J.; Nicol, E. J. Physical Review B 2012, 86, 195405.
[14] Ezawa, M. Physical Review B 2012, 86, 161407.
[15] Bechstedt, F.; Matthes, L.; Gori, P.; Pulci, O. Applied Physics Letters 2012, 100,
261906.
[16] Hwang, E.; Adam, S.; Sarma, S. D. Physical Review Letters 2007, 98, 186806.
[17] Sarma, S. D.; Adam, S.; Hwang, E.; Rossi, E. Reviews of Modern Physics 2011, 83,
407.
[18] Kang, J.; Wu, F.; Li, J. Applied Physics Letters 2012, 100, 233122.
[19] Li, X.; Mullen, J. T.; Jin, Z.; Borysenko, K. M.; Nardelli, M. B.; Kim, K. W. Physical
Review B 2013, 87, 115418.
[20] Bishnoi, B.; Ghosh, B. RSC Adv. 2013, 3, 26153V26159.
[21] Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. ACS nano 2008,
2, 2301V2305.
[22] Xia, F.; Farmer, D. B.; Lin, Y.-m.; Avouris, P. Nano letters 2010, 10, 715V718.
[23] Ni, Z.; Liu, Q.; Tang, K.; Zheng, J.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Lu, J. Nano
letters 2011, 12, 113V118.
[24] Drummond, N.; Zolyomi, V.; FalKo, V. Physical Review B 2012, 85, 075423.
[25] Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas ev, V.; Stesmans, A.
Physical Chemistry Chemical Physics 2013, 15, 3702V3705.
[26] Jose, D.; Datta, A. Physical Chemistry Chemical Physics 2011, 13, 7304V7311.
[27] Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.;
Hobza, P.; Zboril, R.; Kim, K. S. Chemical reviews 2012, 112, 6156V6214.
[28] Zhang, H.; Bekyarova, E.; Huang, J.-W.; Zhao, Z.; Bao, W.; Wang, F.; Haddon, R.
C.; Lau, C. N. Nano letters 2011, 11, 4047V4051.
[29] Varykhalov, A.; Scholz, M.; Kim, T. K.; Rader, O. Physical Review B 2010, 82, 121101.
[30] Du, Y. et al. ACS nano, 2014, 8, 10019.
[31] Elias, DC et al. Science, 2009, 323, 610-613.
[32] Haberer, D. et al. Nano Letters, 2010, 10, 3360.
[33] Balog, R. et al. Nature materials, 2010, 9, 315.
[34] Grassi, R.; Low, T.; Lundstrom, M. Nano letters 2011, 11, 4574V4578.
[35] Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B.
Applied Physics Letters 2010, 97, 223109.
[36] Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Leandri, C.; Ealet, B.; Le Lay, G.
Applied Physics Letters 2010, 96, 183102.
[37] Meng, L. et al. Nano Letters, 2013, 13, 685.
[38] Nakano, H.; Mitsuoka, T.; Harada, M.; Horibuchi, K.; Nozaki, H.; Takahashi, N.;
Nonaka, T.; Seno, Y.; Nakamura, H. Angewandte Chemie International Edition 2006,
45, 6303V6306.
[39] Okamoto, H.; Kumai, Y.; Sugiyama, Y.; Mitsuoka, T.; Nakanishi, K.; Ohta, T.;
Nozaki, H.; Yamaguchi, S.; Shirai, S.; Nakano, H. Journal of the American Chemical
Society 2010, 132, 2710V2718.
[40] Sugiyama, Y.; Okamoto, H.; Mitsuoka, T.; Morikawa, T.; Nakanishi, K.; Ohta, T.;
Nakano, H. Journal of the American Chemical Society 2010, 132, 5946V5947.
[41] Cahangirov, S.; Topsakal, M.; AktLurk, E.; SMahin, H.; Ciraci, S. Physical review
letters 2009, 102, 236804.
[42] Chen, L. et al. Physical review letters 2012, 109, 056804.
[43] Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanasev, V.; Stesmans, A. Applied
Physics Letters 2011, 98, 223107.
[44] Wei, W.; Dai, Y.; Huang, B.; Jacob, T. Physical Chemistry Chemical Physics 2013,
15, 8789V8794.
[45] Ohta, T.; Bostwick, A.; McChesney, J.; Seyller, T.; Horn, K.; Rotenberg, E. Physical
review letters 2007, 98, 206802.
[46] Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Science 2006, 313,
951V954.
[47] Kresse, G.; FurthmLuller, J. Physical Review B 1996, 54, 11169-11186.
[48] Lin, C.; Feng, Y.; Xiao, Y.; Duerr, M.; Huang, X.; Xu, X.; Zhao, R.; Wang, E.; Li,
X.-Z.; Hu, Z. arXiv preprint arXiv:1409.1647 2014.
Chapter 5.
[1] Sylvain Latil, and Luc Henrard: Phys. Rev. Lett. 97 (2006) 036803.
[2] E. McCann: Phys. Rev. B 74 (2006) 161403.
[3] B. Partoens and F. M. Peeters: Phys. Rev. B 74 (2006) 075404.
[4] Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P.
Kim, and H. L. Stormer: Phys. Rev. Lett. 98 (2007) 197403.
[5] Y. H. Ho, Y. H. Chiu, D. H. Lin, C. P. Chang, and M. F. Lin: ACS Nano 4 (2010)
1465-1472.
[6] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec,
D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Phys. Rev. Lett. 97 (2006) 187401.
[7] X. F. Wang, and T. Chakraborty: Phys. Rev. B 75 (2007) 041404.
[8] C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang, and M. F. Lin: J. Phys.
Soc. Jpn. 76 (2007) 024701.
[9] J. Milton Pereira, Jr., F. M. Peeters, and P. Vasilopoulos: Phys. Rev. B 76 (2007)
115419.
[10] J. Y. Wu, S. C. Chen, Oleksiy Roslyak, Godfrey Gumbs, and M. F. Lin: ACS Nano,
5 (2011) 1026-1032.
[11] J. H. Ho, Y. H. Lai, S. J. Tsai, J. S. Hwang, C. P. Chang, and M. F. Lin: J. Phys.
Soc. Jpn. 75 (2006) 114703.
[12] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C.
Maan, G. S. Boebinger, P. Kim, and A. K. Geim: Science 315 (2007) 1379.
[13] V. P. Gusynin, and S. G. Sharapov: Phys. Rev. B 73 (2006) 245411.
[14] M. F. Lin, and Kenneth W.-K. Shung: Phys. Rev. B 51 (1995) 7592.
[15] M. F. Lin, and Kenneth W.-K. Shung: Phys. Rev. B 52 (1995) 8423.
[16] E. Gornik, R. Lassnig, and G. Strasser: Phys. Rev. Lett. 54 (1985) 1820-1823.
[17] J. K. Wang, D. C. Tsui, M. Santos, and M. Shayegan: Phys. Rev. B 45 (1992)
4384V4389.
[18] V. Bayot, E. Grivei, and S. Melinte: Phys. Rev. Lett. 76 (1996) 4584-4587.
[19] V. Bayot, E. Grivei, S. Melinte, and M. Shayegan: Physica E 1 (1997) 36-41.
[20] W. Yi, L. Lu, Zhang Dian-lin, Z. W. Pan, and S. S. Xie: Phys. Rev. B 59 (1999)
R9015-R9018.
[21] V. N. Popov: Phys. Rev. B 66 (2002) 153408.
[22] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E.
Fischer: Appl. Phys. A 74 (2002) 339-343.
[23] B. J. C. van der Hoeven, Jr., and P. H. Keesom: Phys. Rev. 130 (1963) 1318-1321.
[24] S. Picard, D. T. Burns, and P. Roger: Metrologia 44 (2007) 294-302.
[25] Y. H. Ho, J. Y. Wu, Y. H. Chiu, J. Wang, and M. F. Lin: Philos. Trans. R. Soc. A
368 (2010) 5445-5458.
[26] P. R. Wallace: Phys. Rev. 71 (1947) 622.
[27] Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin: Phys. Rev. B 77 (2008) 085426.
[28] M. F. Lin, and Kenneth W.-K. Shung: Phys. Rev. B 54 (1996) 2896.
[29] R. Roldan, M. P. Lopez-Sancho, and F. Guinea: Phys. Rev. B 77 (2008) 115410.
[30] T. O. Wehling, I. Grigorenko, A. I. Lichtenstein, and A. V. Balatsky: Phys. Rev. Lett.
101 (2008) 216803.
[31] J. H. Wong, B. R. Wu, and M. F. Lin: J. Phys. Chem. C 116 (2012) 8271-8277.
Chapter 6.
[1] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, and I. S. Sanders:
Nature 420 (2002) 156.
[2] A. K. Geim, K. S. Novoselov: Nat. Mater. 6 (2007) 183.
[3] S. Iijima: Nature 354 (1991) 56.
[4] H. W. Kroto, J. R. Heath, S. C. OBrien, R. F. Curl, and R. E. Smalley: Nature 318
(1985) 162 .
[5] F. Tuinstra, J. L. Koenig: J. Chem. Phys. 53 (1970) 1126.
[6] P. R. Wallace: Phys. Rev. 71 (1947) 622.
[7] I. Lobato and B. Partoens: Phys. Rev. B 83 (2011) 165429.
[8] Y. H. Ho, J. Wang, Y. H. Chiu, M. F. Lin, and W. P. Su: Phys. Rev. B 83 (2011)
121201.
[9] M. Koshino: Phys. Rev. B 81 (2010) 125304.
[10] F. L. Shyu and M. F. Lin: J. Phys. Soc. Jpn. 69 (2000) 3781.
[11] F. L. Shyu and M. F. Lin: J. Phys. Soc. Jpn. 70 (2001) 897.
[12] C. H. Ho, Y. H. Ho, Y. Y. Liao, Y. H. Chiu, C. P. Chang, M. F. Lin: J. Phys. Soc.
Jpn. 81 (2012) 024701.
[13] Y. H. Ho, Y. H. Chiu, W. P. Su, and M. F. Lin: Appl. Phys. Lett. 99 (2011) 011914.
[14] R. R. Haering: Can. J. Phys. 36 (1958) 352.
[15] J. K. Lee, S. C. Lee, J. P. Ahn, S. C. Kim, J. I. B. Wilson and P. John: J. Chem.
Phys. 129 (2008) 234709.
[16] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima: Phys. Rev. Lett. 102 (2009) 015501.
[17] D. L. Greenaway and G. Harbeke: Phys. Rev. 178 (1969) 1340.
[18] M. Orlita, C. Faugeras, G. Martinez, D. K. Maude, M. L. Sadowski, and M. Potemski:
Phys. Rev. Lett. 100 (2008) 136403.
[19] M. Breusing, C. Ropers, and T. Elsaesser: Phys. Rev. Lett. 102 (2009) 086809.
[20] B. J. C. van der Hoeven, Jr. and P. H. Keesom: Phys. Rev. 130 (1963) 1318.
[21] J. Krumhansl and H. Brooks: J. Chem. Phys. 21 (1953) 1663.
[22] A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, R. C. Haddon: J. Phys. Chem. C, 111
(2007) 7565.
[23] C. Lin, D. D. L. Chung: Carbon 47 (2009) 295.
[24] J.-C. Charlier and J.-P. Michenaud: Phys. Rev. B 43 (1991) 4579.
[25] J.-C. Charlier and J.-P. Michenaud: Phys. Rev. B 44 (1991) 13237.
[26] J.-C. Charlier and J.-P. Michenaud: Phys. Rev. B 46 (1992) 4540.
[27] C. Kittel and P. McEuen: Introduction to solid state physics (Wiley, New York, 1996).
[28] S. Y. Lin, Y. H. Ho, Y. C. Huang, and M. F. Lin: J. Phys. Soc. Jpn. 81 (2012) 084602.
校內:2020-04-02公開