簡易檢索 / 詳目顯示

研究生: 曾家恩
Zeng, Jia-En
論文名稱: 以液態剝離法將石墨轉變為少層石墨烯及其特性之研究
Study on fabrication and characterization of few-layers graphene by using liquid-phase exfoliation method
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 石墨烯液態剝離法酒精與水拉曼光譜原子力顯微鏡電導度計
外文關鍵詞: Few-layers graphene, alcohol-water mixture, Raman spectroscopy, AFM
相關次數: 點閱:143下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於石墨烯卓越的特性使眾人對它的研究不曾停止過,竭盡所能地希望將石墨烯推向商業化的發展。本實驗參考自前人的液態剝離法,其將石墨放入有機溶劑中震盪剝離產生石墨烯,不同的是,我們以酒精與水混合液取代有機溶劑,此方法對環境較友善、毒性較低。並藉由調整酒精與水比例、震盪時間長短、離心速率快慢與原料石墨濃度得到較佳的石墨烯懸浮液體。
      由拉曼光譜圖可判別樣品為石墨或少層石墨烯,並藉由原子力顯微鏡得到其高度、寬度與樣品的均勻度,再將拉曼圖譜與原子力顯微鏡結果做交互比對。另外,使用紫外光/可見光光譜儀與電導度計去得知分散液吸收度、石墨濃度與電導度。實驗結果得知:震盪時間超過三小時即可得到少層石墨烯;若達六小時,少層石墨烯的比例會更高、均勻度更佳。酒精與水比例則是控制在40%:60%左右,能使懸浮中的石墨烯不易沉積於底部,有較佳的穩定性,可維持數週以上。離心速率在3000 rpm可有效分離尚未剝離的石墨片與少層石墨烯,使樣品有較佳的均勻度;石墨濃度則必須控制在0.2 mg / ml以下,使石墨易於剝離成石墨烯,提高整體懸浮石墨烯之產量。

    Graphene dispersions were produced by liquid-phase exfoliation method. Sonication of graphite powder in alcohol solution can yield graphene dispersions which contains numerous few-layers graphene sheets at micrometer scale, and they can be identified by the Raman spectroscopy and atomic force microscope (AFM). Raman spectroscopy analysis revealed two peaks at ~1580cm-1 and 2600~2700cm-1 called G peak and 2D peak, we focus on shape difference of 2D peak that can use to determine the graphene layers. The conductivity and concentration of dispersions is determined by the conductivity meter and visible absorbance via Lambert – Beer’s law (A=abc). It shows the yield of graphene is about 0.63%. In order to examine the stability of the graphene dispersions, the solution was placed for a month and the concentration variation was measured every interval. The experimental parameters are optimized by adjusting alcohol-water mixture proportion, sonication time, graphite mass and centrifugation speed. This study provides a green liquid-phase exfoliation method to prepare few-layers graphene with alcohol-water mixture.

    中文摘要..............................................i Extend Abstract.....................................ii 致謝................................................vi 目錄.................................................I 圖目錄..............................................III 表目錄...............................................VI 第一章 緒論.........................................1 第二章 文獻回顧.....................................4    2.1 石墨烯基本結構..............................4    2.2 石墨烯層數..................................7    2.3 石墨烯性質與其應用..........................10    2.4 石墨烯製程方式..............................14     2.4.1 機械剝離法.............................15     2.4.2 液態剝離法.............................17     2.4.3 氧化石墨烯還原法........................20     2.4.4 碳化矽磊晶法...........................21     2.4.5 化學氣相沉積法.........................22 第三章 實驗流程與分析儀器............................29    3.1 實驗流程...................................29    3.2 樣品製備...................................31     3.2.1 石墨烯分散液製備........................31     3.2.2 石墨烯 / 矽基板樣品製備.................32     3.2.3 樣品參數...............................33    3.3 分析儀器...................................35     3.3.1 拉曼光譜儀.............................35     3.3.2 原子力顯微鏡...........................38     3.3.3 紫外光/可見光光譜儀.....................39     3.3.4 電導度測量計...........................40 第四章 實驗結果與討論................................41    4.1 不同酒精與水重量比例對石墨烯之影響............41    4.2 震盪時間長短與製程之石墨烯關係...............47    4.3 不同離心速率下之石墨烯分散液.................56    4.4 混合液中不同石墨濃度對其影響.................65    4.5 各項因素之綜合比較..........................73    4.6 與前人文獻之比較............................73 第五章 結論.........................................75 參考文獻..............................................77

    Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Özyilmaz, B., Ahn, J.H., Hong, B.H., Iijima, S., 2010. “Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotechnology 5, 574–578.
    Balandin, A.A., 2011. “Thermal properties of graphene and nanostructured carbon materials”, Nature Materials, 10, 569–581.
    Bao, W., Jing, L., Jr, J.V., Lee, Y., Liu, G., Tran, D., Standley, B., Aykol, M., Cronin, S.B., Smirnov, D., Koshino, M., McCann, E., Bockrath, M., Lau, C.N., 2011. “Stacking-dependent band gap and quantum transport in trilayer graphene”, NATURE PHYSICS, 7, 948-952.
    Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y., 2008. “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors”, ACS Nano, 2 (3), 463–470.
    Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., Firs, P.N., de Heer, W.A., 2004. “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics”, J. Phys. Chem. B, 108, 19912-19916.
    Bergin, S.D., Nicolosi, V., Streich, P.V., Giordani, S., Sun, Z., Windle, A.H., Ryan, P., Niraj, N.P.P., Wang, Z.T.T., Carpenter, L., Blau, W.J., Boland, J.J., Hamilton, J.P., Coleman, J.N., 2008. “Towards Solutions of Single-Walled Carbon Nanotubes in Common Solvents”, Adv. Mater., 20, 1876-1881.
    Bergin, S.D., Sun, Z., Rickard, D., Streich, P.V., Hamilton, J.P., Coleman, J.N., 2009. “Multicomponent Solubility Parameters for Single-Walled Carbon Nanotube-Solvent Mixtures”, ACS NANO, 3 (8), 2340-2350.
    Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K., Novoselov, K.S., “Graphene-Based Liquid Crystal Device”, NANO LETTERS, 8, No. 6, 1704-1708.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., 2008. “Ultrahigh electron mobility in suspended graphene”, Solid State Communications, 146, 351–355.
    Bose, S., Kim, N.H., Kuila1, T., Lau1, K., Lee, J.H., 2011. “Electrochemical performance of a graphene–polypyrrole nanocomposite as a supercapacitor electrode”, Nanotechnology, 22, 295202.

    Brodie, B.C., 1859. “On the Atomic Weight of Graphite”, Phil. Trans. R. Soc. Lond. 149, 249-259.
    Calizo, I., Bejenari, I., Rahman, M., Liu, G., Balandin, A.A., 2009. “Ultraviolet Raman microscopy of single and multilayer graphene”, J. Appl. Phys, 106, 043509.
    Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K.S., Basko, D.M., Ferrari, A.C., 2009. “Raman Spectroscopy of Graphene Edges”, NANO LETTERS, 9, No. 4, 1433-1441.
    Charlier, J.C., Gonze, X., Michenaud, J.P., 1994. “First-principles study of the stacking effect on the electronic properties of graphites”, Carbon, 32, 2, 289-299.
    Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S., 2008. “Electrons in Graphene can Travel 100 Times Faster than in Silicon”, University of Maryland.
    Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S., 2008. “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, nature nanotechnology, 3, 206-209.
    Chen, S., Zhu, J., Wang, X., 2010. “One-Step Synthesis of Graphene-Cobalt Hydroxide Nanocomposites and Their Electrochemical Properties”, J. Phys. Chem. C, 114, 11829–11834.
    Coleman, JN., 2013. “Liquid Exfoliation of Defect-Free Graphene”, Acc. Chem. Res., 46 (1), 14-22.
    Cookson, C., 2013. “Graphene Faster, stronger, bendier”.
    Domingues, S.H., Salvatierra, R.V., Oliveirab, M.M., Zarbin, A.J.G., 2011. “Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerizationw”, Chem. Commun, 47, 2592–2594.
    Du1rkop, T., Getty, S.A., Cobas, E., Fuhrer, M.S., 2004. “Extraordinary Mobility in Semiconducting Carbon Nanotubes”, Nano Lett., 4, No. 1, 35-39.
    Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl1, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T., 2009. “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide”, Nature Materials, 8, 203-207.
    Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim A.K., 2006. “Raman Spectrum of Graphene and Graphene Layers”, physical review letters, 97, 187401.
    Frank, I.W., Tanenbaum, D.M., van der Zande, A.M., McEuen, P.L., 2007. “Mechanical properties of suspended graphene sheets”, J. Vac. Sci. Technol. B, 25, 2558-2561.
    Gao, Y., Hao, P., 2009. “Mechanical properties of monolayer graphene under tensile and compressive loading”, Physica E, 41, 1561-1566.
    Geim, A.K., Novoselov, K.S., 2007. “The rise of graphene”, Nature Materials, 6, 183-191.
    Gong, P., Wang, Z., Wang, J., Wang, H., Li, Z., Fan, Z., Xu, Y., Han, X., Yanga, S., 2012. “One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage”, J. Mater. Chem., 22, 16950-16956.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe,F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gunko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., 2008. “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat. Nanotechnol, 3, 563-568.
    Huang, X., Qi, X., Boeyab, F., Zhang, H., 2012. “Graphene-based composites”, Chem. Soc. Rev., 41, 666-686.
    Hummers, W.S., Offeman, R.E., 1958. “Preparation of graphite oxide”, J. Am. Chem. Soc, 80, 1339.
    Jiang, Z., Zhanga, Y., Tana, Y.W., Stormer, H.L., Kima, P., 2007. “Quantum Hall effect in graphene”, Solid State Communications, 143, 14–19.
    Kim, H., Mattevi, C., Kim, H.J., Mittal, A., Mkhoyan, K.A., Riman, R.E., Chhowall, M., 2013. “Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly”, Nanoscale, 5, 12365–12374.
    Kim, K., Choi1, J.Y., Kim, T., Cho, S.H., Chung, H.J., 2011. “A role for graphene in silicon-based semiconductor devices”, Nature 479, 338–344.
    Lerf, A., He, H., Forster, M., Klinowski, J., 1998. “Structure of Graphite Oxide Revisited”, J. Phys. Chem. B, 102, 4477-4482.
    Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff1, R.S., 2009. “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, 324, 1312-1314.
    Li, X., Wang, X., Zhang, L., Lee, S., Dai, H., 2008. “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors”, Science, 319 (5867), 1229-1232.
    Lindemann, F.A., 1910. “The calculation of molecular natural frequencies”, Phys. Z, 11, 609-612.
    Liu, C., Yu, Z., Neff, D., Zhamu, A., Jang, B.Z., 2010. “Graphene-Based Supercapacitor with an Ultrahigh Energy Density”, Nano Lett., 10, 4863–4868.
    Malarda, L.M., Pimentaa, M.A., Dresselhaus b, G., Dresselhaus, M.S., 2009. “Raman spectroscopy in graphene”, Physics Reports, 473, 51-87.
    Medina, H., Lin, Y.C., Obergfell, D., Chiu, P.W., 2011. “Tuning of Charge Densities in Graphene by Molecule Doping”, Adv. Funct. Mater, 21, 2687–2692.
    Mermin, N.D., 1968. “Crystalline Order in Two Dimensions”, Phys. Rev., 176, 250-254.

    Mermin, N.D., Wagner, H., 1966. “Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models”, Phys. Rev. Lett, 17, 1133.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, J.T., Roth, S., 2007. “The structure of suspended graphene sheets”, Nature, 446, 60-63.
    Morpurgo, A.F., 2015. “The ABC of 2D materials”, NATURE PHYSICS, 11, 625.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., 2004. “Electric field effect in atomically thin carbon films”, Science, 306, 666-669.
    Peierls, R., 1934. “Bemerkungen u‥ber Umwandlungstemperaturen”, Helv. Phys. Acta 7, 81-83.
    Prasher, R., 2010. “Graphene Spreads the Heat”, Science, 328 (5975), 185-186.
    Pumera, M., 2009. “Electrochemistry of graphene: new horizons for sensing and energy storage”, The Chemical Record, 9, Issue 4, 211–223.
    Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J., 2009. “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Letters, 9, 30-35.
    Schwierz, F., 2010. “graphene transistors”, Nature Nanotechnology 5, 487–496.
    Seger, B., Kamat, P.V., 2009. “Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells”, J. Phys. Chem. C, 113, 7990-7995.
    Somani, P.R., Somani, S.P., Umeno, M., 2006. “Planer nano-graphenes from camphor by CVD”, Chemical Physics Letters, 430, 56-59.
    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S., 2007. “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 45, 1558-1565.
    Su, C.Y., Lu, A.Y., Wu, C.Y., Li, Y.T., Liu, K.K., Zhang, W., Lin, S.Y., Juang, Y.Z., Zhong, Y.L., Chen, F.R., Li, L.J., 2011. “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition”, Nano Lett., 11, 3612-3616.
    Venables, J.A., Spiller, G.D.T., Hanbucken, M., 1984. “Nucleation and growth of thin films”, Rep. Prog. Phys, 47, 399-459.
    Wallace, P.R., 1947. “The Band Theory of Graphite”, Physical Review, 71, 622-634.
    Wang, X., Zhi, L., Mu2llen, K., 2008. “Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells”, NANO LETTERS, 8, No. 1, 323-327.
    Warner, J.H., Schaffel, F., Bachmatiuk, A., Rummeli, M.H., 2013. “Graphene; fundamentals and emergent applications”.

    Wu, Z.S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., Zhou, G., Li, F., Cheng, H.M., 2010. “Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance”, ASC NANO, 4, No. 6, 3187-3194.
    Yi, M., Shen, Z., Ma, S., Zhang, X., 2012. “A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite”, Journal of Nanoparticle Research, 14:1003.
    Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., Pei, S.S., 2008. “Graphene segregated on Ni surfaces and transferred to insulators”, Appl. Phys. Lett., 93, 113103.
    Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P., 2005. “Experimental observation of the quantum Hall effect and Berry’s phase in graphene”, Nature 438, 201-204.
    Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S., 2010. “Graphene and Graphene Oxide: Synthesis, Properties and Applications”, Adv. Mater, 22, 3906–3924.
    林永昌、呂俊頡、鄭碩方、邱博文,2011,石墨烯之電子能帶特性與其元件應用,物理雙月刊33卷2期,191-202。
    邱緯航、葉名倉,2010,“混成軌域”,科技部高瞻自然科學教學資源平台。
    翁任賢,2013,石墨烯相關系統之電子與力學性質,博士論文,成功大學。
    莊鎮宇,2011,石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展,物理雙月刊33卷2期,155-162。
    劉偉仁、郭信良,2011,下世代能源材料 - 石墨烯,物理雙月刊33卷2期,178-182。

    下載圖示 校內:2021-08-28公開
    校外:2021-08-28公開
    QR CODE