簡易檢索 / 詳目顯示

研究生: 吳宗彥
Wu, Tsung-Yen
論文名稱: 以流體化床結晶技術合成銅-鐵雙成分材料
Synthesis of bimetallic Cu/Fe using fluidized-bed crystallization
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 流體化床結晶鹼式碳酸銅
外文關鍵詞: Fluidized-bed, crystallization, copper, basic copper carbonate
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子、電鍍、金屬加工及顏料等工業製程會排放大量含銅廢水,因此衍生許多環境問題。流體化床結晶(FBC)技術為能解決傳統混凝沉澱法生成高含水率污泥缺點,並回收低含水率之難溶性鹽類或氧化物結晶顆粒,藉以回收廢水中的重金屬。本研究以200 ppm低濃度含銅合成廢水作為進料,以含鐵成分擔體(support)如實廠副產物顆粒磷酸亞鐵與ND3(α-FeOOH)作為晶種(seed),利用碳酸氫鈉作為沉澱劑,於FBC反應器中回收銅鹽結晶。利用瓶杯實驗探討FBC之操作條件,結果顯示銅離子會隨著不同pHf,而形成不同的銅鹽沉澱物,包含水藍銅磐(Cu4(SO4)(OH)6.H2O)、鹼式碳酸銅(Cu2(OH)2CO3)以及氧化銅(CuO)。在FBC系統中,實驗參數包括滯留時間(ts.s)、回流口酸鹼值(pHe)、碳酸對銅進料莫爾比([CO3] / [Cu])、截面負荷(LCu)、含鐵擔體物種及擔體顆粒粒徑等。在最適化的操作條件下([Cu],in = 209 ppm, pHe = 8.63, [CO3] / [Cu] = 1.21, HRT = 10.9 min, L = 0.57 kg /m2‧hr, Fe3(PO4)2擔體尺寸 = 1.00-1.41 mm, 擔體靜床高= 30 cm, 擔體浮動床高 = 45 cm),銅結晶率(CR)與去除率(TR)分別達到93.1 %與99.7 %,出流水銅濃度可降至0.353 ppm。提高進料濃度至[Cu]in = 689 ppm,即提高系統截面負荷至1.97 kg /m2‧hr,控制 pHe = 8.2±0.7、[CO3] / [Cu] = 1.4 ± 0.2等條件下,其CR可達89 %,TR約為99.7 %。此外,以進料[Cu]in = 400 ± 10 ppm,兩種含鐵顆粒在相對應的最佳化條件下操作240分鐘,可達7.36 mg-Cu/g的銅批覆量,兩種含鐵擔體的銅披覆量差異不明顯。
    最後,在FBC產品鑑定方面,由顆粒外觀顏色可發現實驗前後有很大的差異,經由SEM分析結果可了解產品顆粒內外部為相異結晶結構的產物。結晶顆粒的XRD分析結果為非晶相(Amorphous phase)之鹼式碳酸銅(Cu2(OH)2CO3)。另一方面,以EDS和Mapping可證實銅鹽批覆於含鐵化合物之擔體上。

    This study aims to recover copper from synthetic wastewater and produce Cu / Fe bimetallic material at the same time by fluidized-bed crystallization(FBC) technology. The FBC technology can solve the flaws of chemical precipitation method which produce high water content sludge, and recover the poorly soluble salt or oxide crystal particles with low water content from wastewater. In this study, ferrous phosphate and ND3 (α-FeOOH) particles from factories’ products were used as seeds, and sodium bicarbonate was used as precipitant. Under optimum operating conditions ([Cu]in = 209 ppm, pHe = 8.63, [CO3] / [Cu] = 1.21, HRT = 10.9 min, LCu = 0.57 kg / m2·hr, Fe3(PO4)2 diameters = 1.00 - 1.41 mm, static bed height = 30 cm, floating bed height = 45 cm), copper crystallization rate (CR) and total removal rate (TR) could reach 93.1 % and 99.7 % respectively. The outflow soluble copper concentration ([Cu]s) could drop to 0.353 ppm. Besides, with the feed concentration [Cu]in = 400 ± 10 ppm, both of the two iron-containing particles operated for 240 minutes under the corresponding optimum conditions could reach up to 7.36 mg-Cu / g-seeds. Finally, the SEM analysis results showed different crystal structures of the inside and outside of the product particles. The XRD analysis of the crystal particles showed an amorphous phase of basic copper carbonate (Cu2(OH)2CO3). EDS and Mapping analysis showed that the copper salt was coated on the carriers successfully.

    第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 2 第二章 文獻回顧 3 2-1 自然界中的銅 3 2-2 銅的應用與汙染源 7 2-3 銅的傳播途徑及其危害與法規標準 9 2-4 銅廢水之處理方法 11 2-4-1 化學混凝/沉澱法 12 2-4-2 離子交換樹脂法 14 2-4-3 吸附法 15 2-4-4 薄膜分離法 16 2-5 流體化床結晶技術 18 2-5-1 流體化床結晶(Fluidized-Bed Crystallization, FBC)技術 19 2-5-2 FBC和FBHC法處理含銅廢水之文獻整理 22 2-6 結晶學 23 2-6-1 結晶與沉澱 23 2-6-2 成核理論 25 2-6-3 介穩區概念 27 2-7 碳酸於水中之平衡關係 29 2-7-1 密閉系統中碳酸根平衡關係 29 2-7-2 開放系統中碳酸根平衡關係 31 2-8 銅於碳酸系統中之溶解曲線圖 33 2-9 鹼式碳酸銅 39 第三章 實驗設備、材料與方法 41 3-1 研究架構與流程 41 3-2 實驗設備介紹 43 3-2-1 凝集試驗機 43 3-2-2 流體化床反應器 44 3-3 符號及公式定義 45 3-3-1 化學沉澱法之符號及公式定義 45 3-3-2 FBHC研究之符號及公式定義 45 3-4 實驗藥品 47 3-5 實驗步驟 47 3-5-1 化學沉澱法-含銅溶液於碳酸系統中之瓶杯實驗 47 3-5-2 流體化床結晶技術(FBC)實驗 48 3-6 檢測儀器與分析方法 49 3-6-1 感應耦合電漿原子發射光譜儀 (Inductively Coupled Plasma-Optical Emission Spectrometer, ICP-OES) 49 3-6-2 總有機碳分析儀 (Total Organic Carbon Analyzer, TOC) 50 3-6-3 X光繞射分析儀 (X-Ray Diffraction analyzer, XRD) 50 3-6-4 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 51 3-6-5 表面積及奈米孔徑分析儀(Surface Area and Porosimetric Analyzer) 51 第四章 結果與討論 52 4-1 JAR-TEST合成鹼式碳酸銅研究之PHF探討 52 4-2 FBC鹼式碳酸銅披覆含鐵化合物擔體研究之變因探討 57 4-2-1 含鐵化合物之擔體物性分析 58 4-2-2 定義流體化床系統達穩態時間(ts.s) 68 4-2-3 pHe對FBC的影響 71 4-2-4 [CO3] / [Cu]對FBC的影響 74 4-2-5 截面負荷對FBC的影響 77 4-2-6 不同物種之含鐵化合物擔體之鹼式碳酸銅披覆量比較與產物物性分析 81 第五章 結論與建議 91 5-1 結論 91 5-2 建議 92

    1. 楊國卿, 印刷電路板業廢水處理系統化學混凝效能提升之研究. 中央大學環境工程研究所碩士在職專班學位論文, 2006: p. 1-76.
    2. Group, I.C.S., The world copper factbook 2018. 2018: Lisbon, Portugal. p. 59.
    3. Brown, T., et al., World Mineral Production 2013-17. 2019, British Geological Survey.
    4. survey, B.g. Copper. 2007.
    5. Brauer, G., Handbook of preparative inorganic chemistry. Vol. 2. 2012: Elsevier.
    6. Wiberg, E., N. Wiberg, and A. Holleman, Inorganic Chemistry p. 1655. 2001, Academic Press.
    7. Francis, R., The Corrosion of Copper and Its Alloys: A Practical Guide for Engineers. 2010: NACE International.
    8. Pears, P., HDRA encyclopedia of organic gardening. 2001: Dorling Kindersley.
    9. ATSDR, Toxicological Profile for Copper. 2004, U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA.
    10. Barceloux, D.G. and D. Barceloux, Copper. Journal of Toxicology: Clinical Toxicology, 1999. 37(2): p. 217-230.
    11. 邵琼, et al., 铜镉渣的回收利用现状. 2003.
    12. 彭人勇 and 程宝珍, Fe/C 微电解-絮凝沉淀法处理电镀废水中铜的研究. 2012.
    13. 高建程 and 舒生辉, 电镀行业中含铜废水的处理与回收工艺探讨. 广西轻工业, 2011. 5: p. 75-76.
    14. 經濟部工業局, 印刷電路板業環保工安整合性技術手冊. 2000, 台北.
    15. 經濟部工業局, 電路板業環境技術與建制環境管理系統指引. 2000年2月.
    16. Cecconi, I., et al., Oxidative Modification of Aldose Reductase Induced by Copper Ion DEFINITION OF THE METAL-PROTEIN INTERACTION MECHANISM. Journal of Biological chemistry, 2002. 277(44): p. 42017-42027.
    17. Hedera, P., et al., Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin II. The denture cream is a primary source of excessive zinc. Neurotoxicology, 2009. 30(6): p. 996-999.
    18. Rouzer, C., Metals and DNA repair. Chemical Research in Toxicology, 2010. 23(3): p. 1517-1518.
    19. Bonham, M., et al., The immune system as a physiological indicator of marginal copper status? British Journal of Nutrition, 2002. 87(5): p. 393-403.
    20. 中華民國行政院環境保護署, 放流水標準. 2017.
    21. 政院環境保護署, 飲用水水質標準. 2017.
    22. 台灣自來水公司, 飲用水水質標準. 2017.
    23. WHO, Guidelines for Drinking-water Quality. 2011.
    24. Crini, G. and E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 2019. 17(1): p. 145-155.
    25. Ku, Y. and I.L. Jung, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water research, 2001. 35(1): p. 135-142.
    26. Fu, F. and Q. Wang, Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 2011. 92(3): p. 407-418.
    27. Gunatilake, S., Methods of removing heavy metals from industrial wastewater. Methods, 2015. 1(1).
    28. Benefield, L.D., J.F. Judkins, and B.L. Weand, Process chemistry for water and wastewater treatment. 1982: Prentice Hall Inc.
    29. 邵利芬, et al., 含铜电镀废水处理技术研究进展. 2007.
    30. 黃富昌, et al. 探討電子業含銅廢液回收技術. in 2009. 2009.
    31. 张勇, et al., 黄姜-皂素废水综合处理技术的探讨. 環境科學與技術, 2004. 27(s): p. 124-125.
    32. 傅伟昌 and 王继徽, 改性天然高分子重金属离子去除剂的研究现状. 吉首大学学报 (自然科学版), 2001. 22(3).
    33. Dizge, N., B. Keskinler, and H. Barlas, Sorption of Ni (II) ions from aqueous solution by Lewatit cation-exchange resin. Journal of hazardous materials, 2009. 167(1-3): p. 915-926.
    34. Hamdaoui, O., Removal of copper (II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: Modeling. Journal of hazardous materials, 2009. 161(2-3): p. 737-746.
    35. Kurniawan, T.A., A Research Study on Cr.(VI) Removal from Contaminated Wastewater Using Chemically Modified Low Cost Adsorbents and Commercial Activated Carbon. 2003: Environmental Technology Program, Sirindhorn International Institute of ….
    36. Hidalgo-Vázquez, A., et al., Cadmium and lead removal from aqueous solutions using pine sawdust as biosorbent. Journal of Applied Sciences in Environmental Sanitation, 2011. 6(4).
    37. Patel, K.P., et al., Removal of cadmium and zinc ions from aqueous solution by using two type of husks. APCBEE procedia, 2013. 5: p. 141-144.
    38. Salam, O.E.A., N.A. Reiad, and M.M. ElShafei, A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. Journal of Advanced Research, 2011. 2(4): p. 297-303.
    39. Wang, X., et al., NF-E2-related factor 2 deletion facilitates hepatic fatty acids metabolism disorder induced by high-fat diet via regulating related genes in mice. Food and chemical toxicology, 2016. 94: p. 186-196.
    40. Siti, N., et al., Adsorption process of heavy metals by low-cost adsorbent: a review. World Applied Sciences Journal, 2013. 28(11): p. 1518-1530.
    41. Davarnejad, R. and P. Panahi, Cu (II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology. Separation and Purification Technology, 2016. 158: p. 286-292.
    42. Guan, H., et al., Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of hazardous materials, 2010. 183(1-3): p. 616-621.
    43. Barakat, M., Adsorption of heavy metals from aqueous solutions on synthetic zeolite. Res. J. Environ. Sci, 2008. 2(1): p. 13-22.
    44. Azzam, E.M., et al., Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu (II) from aqueous solution. International journal of biological macromolecules, 2016. 89: p. 507-517.
    45. Tripathi, A. and M.R. Ranjan, Heavy metal removal from wastewater using low cost adsorbents. J Bioremed Biodeg, 2015. 6(6): p. 1-5.
    46. Crini, G., Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 2005. 30(1): p. 38-70.
    47. Barakat, M.A., New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 2011. 4(4): p. 361-377.
    48. Luo, J., et al., Removal of Cu2+ from aqueous solution using fly ash. Journal of Minerals and Materials Characterization and Engineering, 2011. 10(06): p. 561.
    49. Barakat, M.A., Adsorption behavior of copper and cyanide ions at TiO2–solution interface. Journal of Colloid and Interface Science, 2005. 291(2): p. 345-352.
    50. Georgaka, A. and N. Spanos, Study of the Cu (II) removal from aqueous solutions by adsorption on titania. Global Nest J, 2010. 12(3): p. 239.
    51. Qian, H.-S., et al., Synthesis of Uniform Te@Carbon-Rich Composite Nanocables with Photoluminescence Properties and Carbonaceous Nanofibers by the Hydrothermal Carbonization of Glucose. Chemistry of Materials, 2006. 18(8): p. 2102-2108.
    52. Liang, H.W., et al., Robust and highly efficient free‐standing carbonaceous nanofiber membranes for water purification. Advanced Functional Materials, 2011. 21(20): p. 3851-3858.
    53. Ding, C., et al., Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. Journal of Hazardous Materials, 2016. 313: p. 253-261.
    54. Wang, X., et al., In vitro study of strontium doped calcium polyphosphate-modified arteries fixed by dialdehyde carboxymethyl cellulose for vascular scaffolds. International Journal of Biological Macromolecules, 2016. 93: p. 1583-1590.
    55. Sun, C., B. Wen, and B. Bai, Recent advances in nanoporous graphene membrane for gas separation and water purification. Science Bulletin, 2015. 60(21): p. 1807-1823.
    56. Yu, S., et al., Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorganic Chemistry Frontiers, 2015. 2(7): p. 593-612.
    57. Escobar, I.C., Modern applications in membrane science and technology. 2011: American Chemical Society.
    58. Zhu, W.-P., et al., Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of membrane science, 2014. 456: p. 117-127.
    59. Elimelech, M. and W.A. Phillip, The future of seawater desalination: energy, technology, and the environment. science, 2011. 333(6043): p. 712-717.
    60. Al-Rashdi, B., C. Somerfield, and N. Hilal, Heavy metals removal using adsorption and nanofiltration techniques. Separation & Purification Reviews, 2011. 40(3): p. 209-259.
    61. Soroko, I., Y. Bhole, and A.G. Livingston, Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chemistry, 2011. 13(1): p. 162-168.
    62. Gherasim, C.-V., J. Cuhorka, and P. Mikulášek, Analysis of lead (II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: experimental results and modelling. Journal of membrane science, 2013. 436: p. 132-144.
    63. Duan, J., et al., Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate and its application in removal of Cu2+ ion. Carbohydrate Polymers, 2010. 80(2): p. 436-441.
    64. Mohammad, A.W., et al., Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015. 356: p. 226-254.
    65. Al-Rashdi, B., D. Johnson, and N. Hilal, Removal of heavy metal ions by nanofiltration. Desalination, 2013. 315: p. 2-17.
    66. Tran, A.T., et al., RO concentrate treatment by a hybrid system consisting of a pellet reactor and electrodialysis. Chemical engineering science, 2012. 79: p. 228-238.
    67. Zhang, L., et al., Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. Journal of Environmental Sciences, 2009. 21(6): p. 764-769.
    68. 黃烱秦, 以鋇系化學過氧沉澱法結合流體化床均質顆粒化技術回收含硼廢水中的硼. 成功大學化學工程學系學位論文, 2016: p. 1-110.
    69. Zhou, P., et al., Heavy metal removal from wastewater in fluidized bed reactor. Water Research, 1999. 33(8): p. 1918-1924.
    70. Lee, C. and W. Yang, Heavy metal removal from aqueous solution in sequential fluidized-bed reactors. Environmental technology, 2005. 26(12): p. 1345-1354.
    71. 李嘉宜, 以流體化床反應器處理含銅廢水之研究. 臺灣大學環境工程學研究所學位論文, 2005: p. 1-175.
    72. 黃孝儒, 流體化床結晶技術處理含銅廢水之實廠研究. 臺灣大學環境工程學研究所學位論文, 2007: p. 1-134.
    73. 熊娅, 王凯军, and 张国臣, 诱导结晶工艺处理含铜废水. 化工学报, 2009. 60(10): p. 2603-2608.
    74. Dirksen, J. and T. Ring, Fundamentals of crystallization: kinetic effects on particle size distributions and morphology. Chemical Engineering Science, 1991. 46(10): p. 2389-2427.
    75. Chen, C.L., Comparative Influencing Effect of Hydrodynamics on Crystallization Kinetics in Tapered Fluidized-bed Crystallizer. 2006.
    76. 張華強, 以流體化床反應器開發均相成核與結晶之新穎除磷技術. 成功大學化學工程學系學位論文, 2012: p. 1-107.
    77. 陳政澤, 流體化床結晶反應槽回收廢水中重金屬鎘之研究. 碩士學位論文, 國立中央大學, 桃園, 台灣, 1995.
    78. Kind, M. and A. Mersmann, On supersaturation during mass crystallization from solution. Chemical engineering & technology, 1990. 13(1): p. 50-62.
    79. Nielsen, A.E. and J.M. Toft, Electrolyte crystal growth kinetics. Journal of crystal growth, 1984. 67(2): p. 278-288.
    80. Myerson, A., Handbook of industrial crystallization. 2002: Butterworth-Heinemann.
    81. Feitknecht, W. and P. Schindler, Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution. Pure and Applied Chemistry, 1963. 6(2): p. 125-206.
    82. Moore, J.W. and C.L. Stanitski, Chemistry: The molecular science. 2014: Cengage Learning.
    83. Xiangfeng, C., J. Dongli, and Z. Chenmou, The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods. Sensors and Actuators B: Chemical, 2007. 123(2): p. 793-797.
    84. Zhao, G., Direct synthesis of copper carbonate. 2008, Google Patents.
    85. Kunda, W., H. Veltman, and D. Evans, Production of copper from the ammine carbonate system. PAPER FROM COPPER METALLURGY, AIME, NEW YORK. 1970, 27-69, 1970.
    86. Leach, R.M. and J. Zhang, Micronized wood preservative formulations. 2010, Google Patents.
    87. Leach, R.M. and J. Zhang, Micronized wood preservative formulations. 2013, Google Patents.
    88. Sung, S., D. Lee, and C. Huang, Steady-state humic-acid-containing blanket in upflow suspended bed. Water research, 2005. 39(5): p. 831-838.
    89. Marani, D., J. Patterson, and P. Anderson, Alkaline precipitation and aging of Cu (II) in the presence of sulfate. Water Research, 1995. 29(5): p. 1317-1326.
    90. Zittlau, A.H., et al., Thermodynamics of the basic copper sulfates antlerite, posnjakite, and brochantite. Chemie der Erde-Geochemistry, 2013. 73(1): p. 39-50.
    91. Jolivet, J., De la Solution à l. Oxyde, Savoirs Actuels. Intereditions/CNRS Editions, Paris, 1994.
    92. Cudennec, Y., A. Lecerf, and Y. Gérault, Synthesis of Cu(OH)2 and CuO by Soft Chemistry. ChemInform, 1996. 27(7).
    93. Cudennec, Y. and A. Lecerf, The transformation of Cu(OH)2 into CuO, revisited. Solid state sciences, 2003. 5(11-12): p. 1471-1474.
    94. 張鈞期, 不同金屬藥劑的流體化床結晶技術處理含磷廢水之研究. 成功大學化學工程學系學位論文, 2009: p. 1-118.
    95. Lei, Y., et al., Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism, Stability, and Effects of pH and Bicarbonate Ions. Environ Sci Technol, 2015. 49(11): p. 6838-45.

    下載圖示 校內:2024-08-16公開
    校外:2024-08-16公開
    QR CODE