| 研究生: |
柯宗緯 Ke, Tsung-wei |
|---|---|
| 論文名稱: |
應用ADCP 觀測曾文溪高流量特性之研究 Application of ADCP to Measure the Flood Characteristics of Zengwen River |
| 指導教授: |
呂珍謀
Leu, Jan-Mou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系碩士在職專班 Department of Hydraulic & Ocean Engineering (on the job class) |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | ADCP 、高流量觀測 |
| 外文關鍵詞: | ADCP, high flow discharges survey |
| 相關次數: | 點閱:132 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統流量觀測法為使用機械式流速儀量測河川斷面之各個垂線流速分佈,並以面積法推估出斷面流量,但機械式流速儀量測過程耗時費力且易產生許多誤差,為增加現地觀測之效率及準確度,發展出許多新式流量觀測法及儀器。本研究利用都普勒聲波流速儀進行曾文溪五個測站之現地觀測,低流速低水位時使用手持式ADV進行涉測,高流速高水位時使用拖曳式ADCP進行吊測,並同時蒐集河川局利用普萊氏流速儀觀測之流速資料進行比較及驗證,亦進行全洪程流量觀測,以驗證都普勒聲波流速儀於高流量之適用性。
研究結果顯示,低水位時手持式ADV流速儀利用聲波式都普勒方式量測,較傳統機械式(普萊氏)流速儀較不受地形限制,且流速之量測點數比傳統機械式(普萊氏)流速儀多。高水位時拖曳式ADCP可在短時間內消除水流不穩定性流況之影響,同時量測全斷面水深及流速分佈,並計算出流量,顯示出拖曳式ADCP可有效提升高水位時流量觀測之效率及準確度。
另外,將95~99年之水位-流量率定曲線與本研究推求之率定曲線進行比較,本研究得到的率定曲線與96年和97年相似,顯示高水位流量時河川局實測資料與都普勒聲波流速儀推估之流量資料頗為一致,且此量測系統機動性高,具有高效率及準確度,可有效應用於現地流量觀測,未來具有一定之發展性。
The conventional method for flow discharge observation is using mechanic current meters to measure various vertical flow velocity distributions of the river cross-section, so the cross-section flow discharge can be estimated with velocity-area method. However, the measurement with mechanic current meters is time-consuming and error-prone. Various new methods and instruments for surveying flow discharges are developed for improving the efficiency and accuracy of flow discharge observations. This study used acoustic Doppler current meters to perform field observations at five hydrometric stations in Zengwen River. For low river flow velocity and water level, wading personnel with hand-held ADV were deployed to measure the flow velocities; for high river flow velocity and water level, towed ADCP was deployed from a boom to measure the flow velocities. The measurement results were simultaneously compared and verified with the flood velocity data provided by the River Management Office with Price current meters. The survey was also performed for every level of flood discharge to verify the fitness of acoustic Doppler current meters for measuring high flow discharges.
In the case of low water level, this study shows that acoustic Doppler measurement with hand-held ADV is less hindered by local topography than conventional mechanic (Price) current meters.
Furthermore, acoustic Doppler measurement with hand-held ADV produces more measured points of flow velocities than Price current meters. In the case of high water level, towed ADCP can remove the effect of instable flow condition quickly and simultaneously measures the depth and flow velocity distributions in the whole river cross-section to calculate flow discharges. Hence, towed ADCP effectively improves the measurement efficiency and accuracy in the case of high water level.
In addition, the rating curves for flow discharge-water level measured by this study approximate the rating curves of 2007 and 2008 when they are compared with the rating curves of 2006~2010. The flow discharges estimated by acoustic Doppler current meters demonstrate good agreement with the flow discharge data provided by the River Management Office in the case of high water level. In conclusion, the measurement system this paper provides has high mobility, efficiency and accuracy, so it can be effectively applied to field survey of flood discharges. It also has certain capacity for further development.
1. 水文觀測技術團(2005),「河川水位流量觀測手冊(初稿)」,淡江大學與經濟部水利署。
2. 王如意、易任 (1979),「應用水文學」,國立編譯館出版。
3. 台灣省嘉南農田水利會,嘉南農田水利會七十年史(上),1992。
4. 宋長虹等(2006),「中央管河川流量量測規劃改善計畫及工法之擬訂(1/2)」,成功大學,經濟部水利署。
5. 宋長虹等(2007),「中央管河川流量量測規劃改善計畫及工法之擬訂(2/2)」,成功大學,經濟部水利署。
6. 李明靜,賴泉基 (2000),「由水面流速分布推定河川斷面水深及流量之研究」,中國土木水利工程學刊,第十二卷,第四期,第777 頁至783 頁。
7. 許盈松等(2004),「水位流量觀測資料不確定度及率定曲線分析研究(2/2)」,逢甲大學,經濟部水利署。
8. 許盈松等(2005),「河川流量量測技術革新研究計畫」,逢甲大學,經濟部水利署。
9. 盧召堯 (1997),「台灣河川流量觀測技術之開發與應用」,國立中興大學土木工程學系,台灣省水利處。
10. 賴泉基,洪水期河川流量遙測方法研究(I)(II)(NSC-88-2218-E-006-035) (NSC-89-2211-E-006-069) ,國科會研究報告1998,1999。
11. 賴泉基,應用微波雷達系統於河道水面流速及流量之量測,行政院國家科學委員會第三十五屆出國研究進修人員研究進修報告書,1998。
12. 賴泉基等(1997),「曾文水庫東口隧道進水流量量測系統檢核率定」,國立成功大學水利及海洋工程學系,嘉南農田水利會。
13. 賴泉基等(2002),「高效率流量量測示範站之建置運作(2/2)」,財團法人成大水利海洋研究發展文教基金會,經濟部水利署。
14. 經濟部水利署,「98年度第六河川局轄區水文測站流量量測」,惠民實業股份有限公司(2009)。
15. 經濟部水利署,「99年度第六河川局轄區水文測站流量量測」,惠民實業股份有限公司(2010)。
16. 蘇藤成(1986),「台灣西部河川輸沙量推估研究─洪水期高流速情況下泥沙施測作業方法及設備改善措施」,經濟部水資源統一規劃委員會,經濟部七十五年度研究發展專題。
17. 張智威(2012),「應用ADCP於量測天然河川流速分佈之研究-以曾文溪流量站為例」,國立成功大學水利及海洋工程研究所碩士論文。
18. 謝文仁(2012),「河川表面流速與平均流速之現場試驗研究-以曾文溪中下游段流量站為例」,國立成功大學水利及海洋碩士在職專班論文。
19. Chen, C. L., (1991), Unified theory on Power law for Flow resistance, Journal of Hydraulic. Engineering, Vol. 117, No. 3, pp. 371-389.
20. Chow, V. T., (1959), Open-channel hydraulics, McGraw-Hill Book Co., Inc., New York.
21. Costa, J.E., R. T. Cheng, F. P. Haeni, N. Melcher, K. R. Spicer, E. Hayes, W. Plant, K. Hayes, C. Teague, and D. Barrick., (2006), Use of radars to monitor stream discharge by noncontact methods, Water Resources Research, Vol. 42, W07422.
22. David S. Mueller and Chad R. Wagner, (2009), Measuring discharge with acoustic Doppler current profilers from a moving boat, U.S. Geological Survey Techniques and Methods 3A-22, 72 p.
23. Engelund, F. and E. Hansen (1972), A Monograph on Sediment Transport in Alluvial Streams, Teknisk Forlag, Copenhagen, p.62.
24. Fukami, K., T. Yamaguchi, H. Iamura, and Y. Tashiro, (2008), Current status of river discharge observation using non-contact current meter for operational use in Japan, World Environmental and Water Resources Congress 2008 Alupua’a, pp. 1-10.
25. Gargett, A. E. Tejada-Martı´nez and C. E. Grosch, (2008), Measuring turbulent large-eddy structures with an ADCP. 1. Vertical velocity variance, Journal of MARINE RESEARCH, Volume 66, Number 2.
26. Kimura, Y., I. Satoshi, and M. Hiroaki, (2005), River flow information system with RF current sensors, 21st International Conference on Interactive Information Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Session 10.8, The 85th AMS Annual Meeting (San Diego, CA).
27. Nikuradse, J. (1932), Gestzmassigkeiten der turbulenten Stromung in glatten Rohren, Ver. Deut. Ing. , Forschungsheft 356.
28. Plant, W. J. and W. C. Keller, (1990), Cross sections and modulation transfer functions at L and Ku bands measured during the tower ocean wave and radar dependence experiment, Journal of Geophysical. Research, Vol. 95, No. C9, pp. 16,277-16,289.
29. Plant, W. J., W. C. Keller, K. Hayes, and K. Spicer, (2005), Streamflow properties from time series of surface velocity and stage, Journal of Hydraulic Engineering, Vol. 131, No. 8, pp.657–664.
30. Polatel, C., (2006), Large-scale roughness effect on free-surface and bulk flow characteristics in open-channel flows, Ph. D. thesis, Civil and Environmental Engineering, University of Iowa, U.S.A.
31. Rantz, S. E., and others, (1982a), Measurement and computation of streamflow, Vol. 1. Measurement of stage and discharge, U. S. Geological Survey Water Supply Paper 2175, U.S. Geological Survey.
32. Rantz, S.E., and others, (1982b), Measurement and computation of streamflow, Vol. 2. Computation of discharge, U. S. Geological Survey Water Supply Paper 2175, U.S. Geological Survey.
33. Ruff, J. F., (2008), Flow measurement: history, encyclopedia of water science, Second Edition, 1: 1, pp. 388-393, Informa Ltd., London, UK.
34. Whalley, N., R. S. Iredale and A. F. Clarel, (2001), Reliability and uncertainty in flow measurement techniques - some current thinking, Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, Vol. 26, No. 10-12, pp. 743-749.
35. Yamaguchi, T. and K. Niizato, (1994), Flood Discharge Observation System using Radio Current meter, Proceedings of Japan Society of Civil Engineers, No. 497, pp. 41-50(in Japanese)