簡易檢索 / 詳目顯示

研究生: 蔡易呈
Tasi, Yi-Cheng
論文名稱: 預混丙烷火焰於多孔性介質燃燒室之燃燒現象探討
The Study on Combustion Characteristics of Premixed Propane-Air Flame in a Porous Media Burner
指導教授: 王振源
Wang, Chen-Yuan
賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 丙烷火焰多孔性介質燃燒室氧化鋁氫氣
外文關鍵詞: Propane-air flame, Porous media burner, Al2O3 porous media, Hydrogen
相關次數: 點閱:128下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立之一多孔性介質燃燒室,利用丙烷為燃料進行燃燒實驗。多孔性介質材質分別為30 PPI的碳化矽與30及15 PPI的氧化鋁。操作參數為丙烷流率、當量比、摻氫量。針對軸向溫度分佈、尾氣濃度分析做討論。由實驗結果得知,丙烷火焰燃燒在多孔性介質燃燒較容易維持高溫,與當量比較不敏感。尾氣濃度分析部分,HC、CO、NOx濃度在當量比改變、高溫位置與熱釋放率都有影響。摻氫實驗部分可得知在適當參數之下摻氫下對於操作區間、HC及CO濃度改善都有顯著的幫助。
      上下游皆為氧化鋁的配置下,丙烷流率1.25 L/min,當量比0.6之參數,可產生內部燃燒將火焰穩定在多孔性介質內部維持高溫1200 oC,CO濃度16.08 ppm,HC殘餘量近乎於0 ppm,NOx濃度24 ppm,達到高溫且相當低汙染排氣條件之燃燒器。

     In this study, propane is taken as fuel in the investigation of the combustion of a self-designed porous media burner. Three porous media, OB-SiC with a pores size distribution of 15 PPI, Al2O3 with pores size distribution of 15 PPI and 30 PPI were used in this work. The observation of the axial temperature distribution and the analysis of the exhaust gas were carried out at different fuel flow rates, equivalence ratios and addition of hydrogen. Experimental results show that the maximum temperature of propane-air flame can be maintained, and that isn’t sensitive to the equivalence ratio. Meanwhile, the concentration analysis of exhaust discloses that CO, HC and NOx concentrations are related with the equivalence ratio, position of the high temperature area and the heat release rate of a self-made porous media burner. From the experiment of propane-air flame mixed with hydrogen, it can be seen that not only the range of operation, but also the emission of CO and HC is improved under proper operational parameters.
      Using Al2O3 as both the upstream and downstream porous media at the fuel flow rate of 1.25 L/min and the equivalence ratio of 0.6. Under those conditions, interior combustion can be produced, and a stable flame temperature up to 1200 oC at the interface of two porous media can be achieved. In addition, a CO concentration of 16.08 ppm, a NOx concentration of 24 ppm and a HC concentration of almost zero were measured. It is concluded that a combustion environment of high-temperature operation and low-pollution emission can be obtained using the porous media combustor.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1前言 1 1-2研究動機 4 1-3研究目的 5 第二章 文獻回顧與基本原理 6 2-1 多孔性介質 6 2-1-1多孔介質熱傳機制 7 2-1-2 多孔材材質特性 10 2-1-3多孔性介質燃燒特性 11 2-1-4 多孔性介質之研究應用 13 2-2 富氫燃料燃燒現象 16 2-3 國內多孔材燃燒室相關研究 17 2-4 丙烷燃燒現象與化學反應 20 2-4-1定當量與當量比 20 2-4-2 預混與非預混火焰特性 21 2-4-3可燃極限 22 第三章 實驗設備與規劃 23 3-1 實驗設備流程圖 23 3-2實驗設備與儀器介紹 24 3-2-1燃料與空氣進料控制系統 24 3-2-2燃燒室主體 25 3-2-3實驗數據及影像擷取系統 30 3-2-3氣體分析系統 33 3-3 實驗參數規劃 37 3-3-1燃燒室溫度分佈及尾氣分析 38 3-3-2摻氫於預混丙烷火焰燃燒現象 44 3-4 實驗流程與事項 46 3-4-1實驗步驟與操作程序 46 3-4-2 實驗時突發狀之處理方法 47 第四章 結果與討論 49 4-1 丙烷預混火焰於燃燒室之軸向溫度分佈 49 4-1-1無多孔性介質燃燒室軸向溫度分佈 49 4-1-2 Type A (SiC+Al2O3) 軸向溫度分佈 53 4-1-3 Type B (Al2O3+Al2O3)軸向溫度分佈 57 4-1-4三種配置下Ta溫度點之比較 61 4-1-5入口高溫現象之改善 62 4-2 多孔性介質燃燒室燃燒後尾氣分析 66 4-2-1燃燒後CO尾氣濃度分析 66 4-2-1燃燒後HC尾氣濃度分析 70 4-2-1燃燒後NOx尾氣濃度分析 73 4-3摻氫於丙烷預混火焰對於燃燒室內之影響 77 4-3-1 Type A配置摻氫實驗 77 4-3-2 Type B 配置摻氫實驗 90 第五章 結論 100 第六章 未來工作 102   表目錄 表2-1多孔材性質表【4】 6 表2-2預混與非預混火焰結構比較 22 表2-3數種氣體可燃極限範圍【37】 22 表3-1不銹鋼材料性質比較表 25 表3-2多孔材配置方式 29 表3-3即時氣體分析儀─量測氣體種類及範圍 35 表3-4即時氣體分析儀─相關規格 36 表3-5丙烷各流率於各當量比之下所需空氣量對照表 40 表3-6實驗參數-不同丙烷流率下實驗參數 41 表3-7 NOx在不同濃度下對人體之危害 43 表3-8 CO在不同濃度下對人體之危害 44 表3-9在丙烷流率0.5 L/min 於各當量比進行摻氫實驗參數 45 表3-10丙烷流率1 L/min,Type A於當量比0.6、0.7進行摻氫參數 45 表3-11 丙烷流率1 L/min,Type B於當量比0.6進行摻氫參數 45

    【1】 S. Dunn, “Hydrogen futures: toward a sustainable energy system,” International Journal of Hydrogen Energy, Vol. 27, pp.235-264, 2002.
    【2】 Global LPG consumption by sector (http://www.worldlpgas.com).
    【3】 M.A. Muieebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, “Applications of porous media combustion technology – A review,” Applied Energy, 86, pp.1365-1375, 2009.
    【4】 O. Pickenacker, K. Pickenacker, K. Wawrzinek, D. Trimis, Pritzkow, WEC, C. Miiller, P. Goedtke, U. Papenburg,J. Adler, Standke, G. Standke, H. Heymer, W. Tauscher, F. Jansen,“Innovative ceramic materials for porous medium burners,” I [J].Interceram:International Ceramic Review, Vol. 48, pp.326-331, 1999.
    【5】 S. Wood, A.T. Harris, “Porous Burners for Lean-burn Applications,” Progress in Energy and Combustion Science, Vol. 34, pp.667-684, 2008.
    【6】 A.J. Barra, J.L. Ellzey, “Heat Recirculation and Heat Transfer in Porous Burners,” Combustion and Flame, Vol. 137, pp.230-241, 2004.
    【7】 M.M. Kamal, A.A. Mohamad, “Combustion in porous media combustion,” Proceedings of the institution of mechanical engineers, Vol. 220, pp.487-508, 2006.
    【8】 Z. Al-Hamamre, A. Al-Zoubi, “The Use of Inert Porous Media Based Reactors for Hydrogen Production,” International Journal of Hydrogen Energy, Vol. 35, pp.1971-1986, 2010.
    【9】 S.R. Khatami, B. Safavisohi, E. Sharbati, “Porosity and permeability effects, on centerline temperature distributions, peak flame temperature, flame structure, and preheating mechanism for combustion in porous media,” Energy Resources Technology, Vol. 129, pp.54-65, 2007.
    【10】 S. Afsharvahid, P.J. Ashman, B.B. Dally, “Investigation of NOx conversion characteristics in a porous medium,” Combustion and Flame, Vol. 152, pp.604-615, 2008 .
    【11】 Z. Al-Hamamrea, S. Voß, D. Trimis, “Hydrogen production by thermal partial oxidation of hydrocarbon fuels in porous media based reformer,” International Journal of Hydrogen Energy, Vol. 34, pp.827-832, 2009.
    【12】 T. Takeno, K. Sato, “An excess enthalpy flame theory,” Combustion Science and Technology, Vol. 20, pp.pp.73 – 84, 1979.
    【13】 D.J. Diamantis, E. Mastorakos, D.A. Goussis, “Simulations of premixed combustion in porous media,” Combustion Theory and Modelling, Vol. 6, pp. 383 - 41, 2002.
    【14】 T.L. Marbach, A.K. Agrawal, “Experimental study of surface and interior combustion using composite porous inert media,” Journal of Engineering for Gas Turbines and Power, Vol. 127, pp.307-313, 2005.
    【15】 V.S. Babkin, A.A. Korzhavin, V.A. Bunev,“Propagation of premixed gaseous explosion flames in porous media,” Combustion and flame , Vol. 87, pp.182-190, 1991.
    【16】 Y.M. Laevslii, Y.S. Babkin,“Stabilized gas combustion wave in an inert porous medium,” Combusion, explosion, and shock waves, Vol. Vol. 44, pp. 502-508, 2008.
    【17】 V. Bubnovich, M. Toledo, L. Henriquez, C. Rosas, J. Romero, “Flame stabilization between two beds of alumina balls in a porous burner,” Applied Thermal Engineering, Vol. 30, pp. 92-95, 2010
    【18】 H. pedersen-Mjaanes, L. Chan, E. Mastorakos, “Hydrogen production from rich combustion in porous media,” International Journal of Hydrogen Energy, Vol. 30, pp.579-592, 2004.
    【19】 K. Wu, M. Liu, P. Zhao, “Stability of lean combustion in mini-scale porous media combustor with heat recuperation,” Chemical Engineering and Processing, Vol. 50, pp.608-613, 2011.
    【20】 J. Charoensuk, A. Lapirattanakun, “On flame stability, temperature distribution and burnout of air-staged porous media combustor firing LPG with different porosity and excess air,” Applied Thermal Engineering, Vol. 31, pp.3125-3141, 2011.
    【21】 R.C. Catapan, A.A.M. Oliveira, M. Costa, “Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner,” Experimental Thermal and Fluid Science, Vol. 35, pp.172-179, 2011.
    【22】 F. Advic, M. Adzic, F. Durst,“Small scale porous medium combustion system for heat production in households,”Applied Energy, Vol.87, pp. 2148-2155, 2010.
    【23】 M.A. Esclante Soberanis, A.M. Fernandez, “A review on the technical adaptations for internal combustion engines to operate with gas/hydrogen mixtures,” International Journal of Hydrogen Energy, Vol. 35, pp.12134-12140, 2010.
    【24】 C.M. White, R.R. Steeper, A.E. Lutz, “The hydrogen-fueled inter combustion engine: a technical review,” International Journal of Hydrogen Energy, Vol. 31, pp.1292-1305, 2006.
    【25】 S.K. Alavandi, A.K. Agrawal, “Experimental study of combustion of hydrogen-syngas/methane fuel mixtures in a porous burner,” International Journal Hydrogen Energy, Vol. 33, pp.1407-1415, 2008.
    【26】 C.J. Tseng, “Effect of hydrogen addition on methane combustion in a porous medium burner,” International Journal Hydrogen Energy, Vol. 27, pp.699-707, 2002.
    【27】 J. Wang, Z. Huang, J. Zheng, H. Miao, “Effect of partially premixed and hydrogen addition on natural gas direct-injection lean combustion,” International Journal Hydrogen Energy, Vol. 34, pp.9239-9247, 2009.
    【28】 張宏禾,“觸媒對多孔性介質爐之預混燃燒現象之影響”,國立中央大學機械工程研究所碩士論文,2003。
    【29】 劉嘉峰,“多孔性燃燒加熱爐燃燒現象研究”,國立中正大學機械工程研究所博士論文,2005。
    【30】 李家欣,“多孔性陶瓷介質燃燒爐結構對燃燒現象之影響”,國立中央大學機械工程研究所碩士論文,2000。
    【31】 徐德利,楊曜維,楊授印,“預混丙烷/空氣火焰在多孔性介質燃燒器中傳遞現象”,中華民國力學學會第三十五屆全國力學會議,2011。
    【32】 欒晏昌,“氫氣在多孔性介質燃燒室之燃燒特性研究”,國立成功大學航空太空工程學系碩士論文,2009。
    【33】 陳瑞驄,“多孔性介質輔助二氧化碳甲烷重組研究”,國立成功大學航空太空工程學系碩士論文,2010。
    【34】 黃紀維,“氫於多孔性介質燃燒室應用在觸媒煆燒之研究”,國立成功大學航空太空工程學系 碩士論文,2011。
    【35】 林京翰,“多孔性介質中氫氣擴散燃燒之特性研究”,國立成功大學航空太空工程學系 碩士論文,2012。
    【36】 賴銘彬, “氫氣於多孔性介質-觸媒混成式重組器之快速冷啟動程序探討”,中國機械工程學會101年度會暨第二十九屆全國學術研討會,2012。
    【37】 J.F. Griffiths, J.A. Barnard, Flame and combustion, Second Edition, Chapman and Hall, New York, 1985.

    下載圖示 校內:2014-08-08公開
    校外:2015-08-08公開
    QR CODE