| 研究生: |
蔡易呈 Tasi, Yi-Cheng |
|---|---|
| 論文名稱: |
預混丙烷火焰於多孔性介質燃燒室之燃燒現象探討 The Study on Combustion Characteristics of Premixed Propane-Air Flame in a Porous Media Burner |
| 指導教授: |
王振源
Wang, Chen-Yuan 賴維祥 Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 丙烷火焰 、多孔性介質燃燒室 、氧化鋁 、氫氣 |
| 外文關鍵詞: | Propane-air flame, Porous media burner, Al2O3 porous media, Hydrogen |
| 相關次數: | 點閱:128 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立之一多孔性介質燃燒室,利用丙烷為燃料進行燃燒實驗。多孔性介質材質分別為30 PPI的碳化矽與30及15 PPI的氧化鋁。操作參數為丙烷流率、當量比、摻氫量。針對軸向溫度分佈、尾氣濃度分析做討論。由實驗結果得知,丙烷火焰燃燒在多孔性介質燃燒較容易維持高溫,與當量比較不敏感。尾氣濃度分析部分,HC、CO、NOx濃度在當量比改變、高溫位置與熱釋放率都有影響。摻氫實驗部分可得知在適當參數之下摻氫下對於操作區間、HC及CO濃度改善都有顯著的幫助。
上下游皆為氧化鋁的配置下,丙烷流率1.25 L/min,當量比0.6之參數,可產生內部燃燒將火焰穩定在多孔性介質內部維持高溫1200 oC,CO濃度16.08 ppm,HC殘餘量近乎於0 ppm,NOx濃度24 ppm,達到高溫且相當低汙染排氣條件之燃燒器。
In this study, propane is taken as fuel in the investigation of the combustion of a self-designed porous media burner. Three porous media, OB-SiC with a pores size distribution of 15 PPI, Al2O3 with pores size distribution of 15 PPI and 30 PPI were used in this work. The observation of the axial temperature distribution and the analysis of the exhaust gas were carried out at different fuel flow rates, equivalence ratios and addition of hydrogen. Experimental results show that the maximum temperature of propane-air flame can be maintained, and that isn’t sensitive to the equivalence ratio. Meanwhile, the concentration analysis of exhaust discloses that CO, HC and NOx concentrations are related with the equivalence ratio, position of the high temperature area and the heat release rate of a self-made porous media burner. From the experiment of propane-air flame mixed with hydrogen, it can be seen that not only the range of operation, but also the emission of CO and HC is improved under proper operational parameters.
Using Al2O3 as both the upstream and downstream porous media at the fuel flow rate of 1.25 L/min and the equivalence ratio of 0.6. Under those conditions, interior combustion can be produced, and a stable flame temperature up to 1200 oC at the interface of two porous media can be achieved. In addition, a CO concentration of 16.08 ppm, a NOx concentration of 24 ppm and a HC concentration of almost zero were measured. It is concluded that a combustion environment of high-temperature operation and low-pollution emission can be obtained using the porous media combustor.
【1】 S. Dunn, “Hydrogen futures: toward a sustainable energy system,” International Journal of Hydrogen Energy, Vol. 27, pp.235-264, 2002.
【2】 Global LPG consumption by sector (http://www.worldlpgas.com).
【3】 M.A. Muieebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, “Applications of porous media combustion technology – A review,” Applied Energy, 86, pp.1365-1375, 2009.
【4】 O. Pickenacker, K. Pickenacker, K. Wawrzinek, D. Trimis, Pritzkow, WEC, C. Miiller, P. Goedtke, U. Papenburg,J. Adler, Standke, G. Standke, H. Heymer, W. Tauscher, F. Jansen,“Innovative ceramic materials for porous medium burners,” I [J].Interceram:International Ceramic Review, Vol. 48, pp.326-331, 1999.
【5】 S. Wood, A.T. Harris, “Porous Burners for Lean-burn Applications,” Progress in Energy and Combustion Science, Vol. 34, pp.667-684, 2008.
【6】 A.J. Barra, J.L. Ellzey, “Heat Recirculation and Heat Transfer in Porous Burners,” Combustion and Flame, Vol. 137, pp.230-241, 2004.
【7】 M.M. Kamal, A.A. Mohamad, “Combustion in porous media combustion,” Proceedings of the institution of mechanical engineers, Vol. 220, pp.487-508, 2006.
【8】 Z. Al-Hamamre, A. Al-Zoubi, “The Use of Inert Porous Media Based Reactors for Hydrogen Production,” International Journal of Hydrogen Energy, Vol. 35, pp.1971-1986, 2010.
【9】 S.R. Khatami, B. Safavisohi, E. Sharbati, “Porosity and permeability effects, on centerline temperature distributions, peak flame temperature, flame structure, and preheating mechanism for combustion in porous media,” Energy Resources Technology, Vol. 129, pp.54-65, 2007.
【10】 S. Afsharvahid, P.J. Ashman, B.B. Dally, “Investigation of NOx conversion characteristics in a porous medium,” Combustion and Flame, Vol. 152, pp.604-615, 2008 .
【11】 Z. Al-Hamamrea, S. Voß, D. Trimis, “Hydrogen production by thermal partial oxidation of hydrocarbon fuels in porous media based reformer,” International Journal of Hydrogen Energy, Vol. 34, pp.827-832, 2009.
【12】 T. Takeno, K. Sato, “An excess enthalpy flame theory,” Combustion Science and Technology, Vol. 20, pp.pp.73 – 84, 1979.
【13】 D.J. Diamantis, E. Mastorakos, D.A. Goussis, “Simulations of premixed combustion in porous media,” Combustion Theory and Modelling, Vol. 6, pp. 383 - 41, 2002.
【14】 T.L. Marbach, A.K. Agrawal, “Experimental study of surface and interior combustion using composite porous inert media,” Journal of Engineering for Gas Turbines and Power, Vol. 127, pp.307-313, 2005.
【15】 V.S. Babkin, A.A. Korzhavin, V.A. Bunev,“Propagation of premixed gaseous explosion flames in porous media,” Combustion and flame , Vol. 87, pp.182-190, 1991.
【16】 Y.M. Laevslii, Y.S. Babkin,“Stabilized gas combustion wave in an inert porous medium,” Combusion, explosion, and shock waves, Vol. Vol. 44, pp. 502-508, 2008.
【17】 V. Bubnovich, M. Toledo, L. Henriquez, C. Rosas, J. Romero, “Flame stabilization between two beds of alumina balls in a porous burner,” Applied Thermal Engineering, Vol. 30, pp. 92-95, 2010
【18】 H. pedersen-Mjaanes, L. Chan, E. Mastorakos, “Hydrogen production from rich combustion in porous media,” International Journal of Hydrogen Energy, Vol. 30, pp.579-592, 2004.
【19】 K. Wu, M. Liu, P. Zhao, “Stability of lean combustion in mini-scale porous media combustor with heat recuperation,” Chemical Engineering and Processing, Vol. 50, pp.608-613, 2011.
【20】 J. Charoensuk, A. Lapirattanakun, “On flame stability, temperature distribution and burnout of air-staged porous media combustor firing LPG with different porosity and excess air,” Applied Thermal Engineering, Vol. 31, pp.3125-3141, 2011.
【21】 R.C. Catapan, A.A.M. Oliveira, M. Costa, “Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner,” Experimental Thermal and Fluid Science, Vol. 35, pp.172-179, 2011.
【22】 F. Advic, M. Adzic, F. Durst,“Small scale porous medium combustion system for heat production in households,”Applied Energy, Vol.87, pp. 2148-2155, 2010.
【23】 M.A. Esclante Soberanis, A.M. Fernandez, “A review on the technical adaptations for internal combustion engines to operate with gas/hydrogen mixtures,” International Journal of Hydrogen Energy, Vol. 35, pp.12134-12140, 2010.
【24】 C.M. White, R.R. Steeper, A.E. Lutz, “The hydrogen-fueled inter combustion engine: a technical review,” International Journal of Hydrogen Energy, Vol. 31, pp.1292-1305, 2006.
【25】 S.K. Alavandi, A.K. Agrawal, “Experimental study of combustion of hydrogen-syngas/methane fuel mixtures in a porous burner,” International Journal Hydrogen Energy, Vol. 33, pp.1407-1415, 2008.
【26】 C.J. Tseng, “Effect of hydrogen addition on methane combustion in a porous medium burner,” International Journal Hydrogen Energy, Vol. 27, pp.699-707, 2002.
【27】 J. Wang, Z. Huang, J. Zheng, H. Miao, “Effect of partially premixed and hydrogen addition on natural gas direct-injection lean combustion,” International Journal Hydrogen Energy, Vol. 34, pp.9239-9247, 2009.
【28】 張宏禾,“觸媒對多孔性介質爐之預混燃燒現象之影響”,國立中央大學機械工程研究所碩士論文,2003。
【29】 劉嘉峰,“多孔性燃燒加熱爐燃燒現象研究”,國立中正大學機械工程研究所博士論文,2005。
【30】 李家欣,“多孔性陶瓷介質燃燒爐結構對燃燒現象之影響”,國立中央大學機械工程研究所碩士論文,2000。
【31】 徐德利,楊曜維,楊授印,“預混丙烷/空氣火焰在多孔性介質燃燒器中傳遞現象”,中華民國力學學會第三十五屆全國力學會議,2011。
【32】 欒晏昌,“氫氣在多孔性介質燃燒室之燃燒特性研究”,國立成功大學航空太空工程學系碩士論文,2009。
【33】 陳瑞驄,“多孔性介質輔助二氧化碳甲烷重組研究”,國立成功大學航空太空工程學系碩士論文,2010。
【34】 黃紀維,“氫於多孔性介質燃燒室應用在觸媒煆燒之研究”,國立成功大學航空太空工程學系 碩士論文,2011。
【35】 林京翰,“多孔性介質中氫氣擴散燃燒之特性研究”,國立成功大學航空太空工程學系 碩士論文,2012。
【36】 賴銘彬, “氫氣於多孔性介質-觸媒混成式重組器之快速冷啟動程序探討”,中國機械工程學會101年度會暨第二十九屆全國學術研討會,2012。
【37】 J.F. Griffiths, J.A. Barnard, Flame and combustion, Second Edition, Chapman and Hall, New York, 1985.