簡易檢索 / 詳目顯示

研究生: 蔡于萱
Tsai, Yu-Hsuan
論文名稱: 在雌激素受體陽性的人類乳癌細胞中探討HDAC2及HDAC5表現量增加對於賀爾蒙治療抗藥性的影響
Investigation of the role of HDAC2 and HDAC5 overexpression in the induction of hormone therapy resistance in estrogen receptor positive breast cancer
指導教授: 張雋曦
Cheung, Chun Hei Antonio
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 83
中文關鍵詞: 組蛋白去乙醯化酶2組蛋白去乙醯化酶5存活素miR-125a-5p雌激素陽性乳癌
外文關鍵詞: HDAC2, HDAC5, survivin, miR-125a-5p, ER+ breast cancer
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 賀爾蒙療法常做為雌激素受體陽性乳癌患者的輔助性治療,儘管許多先天或後天抗藥性的雌激素受體陽性的乳癌病患經常被發現及探討,但是雌激素受體陽性的乳癌患者對賀爾蒙療法產生抗藥性之分子機制尚未完全清楚。而在本篇研究中,我們發現表觀遺傳調節因子-組蛋白去乙醯化酶2(HDAC2)和組蛋白去乙醯化酶5(HDAC5)過度表現於MCF7分離出來的雌激素受體陽性、非雌激素依賴型和具有泰莫西芬抗藥性的MCF7-TamC3乳癌細胞中,更重要的是,透過Kaplan-Meier分析的結果顯示,在泰莫西芬/內分泌治療的雌激素受體陽性乳癌患者同類群組分析中,高表現量的HDAC2和HDAC5與較差的病患整體存活率相關。在分子機制分析的層面中發現,當過度表達HDAC2和HDAC5時,會增加MCF7-TamC3細胞中抗凋亡分子-存活素的表現,而且降低腫瘤抑制因子miR-125a-5p的表現,我們接著進一步利用Kaplan-Meier分析,發現在泰莫西芬治療的雌激素受體陽性乳癌患者中,高表現量的存活素與低表現量的miR-125a-5p和較差的病患整體存活率相關。當本研究藉由siRNA的方式降低HDAC2,HDAC5和survivin的表現時,會增加MCF7-TamC3細胞對缺乏雌激素的敏感性,並恢復對泰莫西芬的敏感性。此外,當過度表達miR-125a-5p時,也會恢復MCF7-TamC3細胞中對泰莫西芬的敏感性。這些發現顯示由HDAC2 / 5調節的存活素與miR-125a-5p在控制雌激素受體陽性乳癌細胞對泰莫西芬與缺乏雌激素的敏感性中扮演重要的角色。標靶HDAC2和HDAC5或其下游調節分子如存活素和miR-125a-5p會是未來讓雌激素受體陽性乳癌患者克服賀爾蒙治療抗藥性的潛勢策略。

    Typically, hormone therapy is used as an adjuvant to treat patients with estrogen receptor positive (ER+) breast cancer. Despite intrinsic or acquired resistance to hormone therapy in ER+ breast cancer patient is frequently reported, the molecular mechanism underlying the induction of hormone therapy resistance in ER+ breast cancer is still incompletely understood. In this study, we found that the epigenetic regulators, histone deacetylase 2 (HDAC2) and histone deacetylase 5 (HDAC5), are overexpressed in the MCF7-dervided ER+ estrogen-independent tamoxifen-resistant MCF7-TamC3 breast cancer cells. Importantly, Kaplan-Meier analysis of expression cohorts of breast tumor showed that high HDAC2 and HDAC5 expression levels correlate with poor overall survival in tamoxifen/endocrine therapy-treated ER+ breast cancer patients. Mechanistic analysis revealed that the upregulated HDAC2 and HDAC5 increase the expression of the anti-apoptotic molecule, survivin, and decrease the expression of the tumor suppressor, miR-125a-5p, in MCF7-TamC3 cells. Kaplan-Meier analysis further revealed that high survivin expression and low miR-125a-5p expression levels correlate with poor overall survival in tamoxifen-treated ER+ breast cancer patients. Molecular downregulation of HDAC2, HDAC5, and survivin by siRNA increased the sensitivity to estrogen deprivation and restored the sensitivity to tamoxifen in MCF7-TamC3 cells. Ectopic overexpression of miR-125a-5p also restored the sensitivity to tamoxifen in MCF7-TamC3 cells. These findings indicate that HDAC2/5-regulated survivin and miR-125a-5p play an important role in regulating the sensitivity to tamoxifen and estrogen deprivation in ER+ breast cancer cells. Targeting HDAC2 and HDAC5, or their downstream regulating molecules like survivin and miR-125a-5p, may be a potential strategy for overcoming resistance to hormone therapy in patients with ER+ breast cancer.

    中文摘要 II ABSTRACT IV 誌謝 VII Abbreviation VIII List of Tables XI List of Figures XII List of Appendices XIV INTRODUCTION 1 1.1. Breast Cancer 2 1.1.1. The epidemiology of breast cancer 2 1.1.2. Treatments of estrogen receptor positive breast cancer 2 1.1.3. Hormone therapy resistance in ER+ breast cancer cells 3 1.2. Role of Histone deacetylases (HDACs) in cancer development 3 1.2.1. Introduction of epigenetics 3 1.2.2. The classification of HDACs and the relation between HDACs and cancer 4 1.2.3. HDAC2 and cancer 5 1.2.4. HDAC5 and cancer 6 1.3. Survivin as a target for human cancers 6 1.3.1 Inhibitors-of-apoptosis proteins (IAPs) family and cancer 6 1.3.2. The cellular functions of survivin 7 1.3.3. Survivin and cancer 8 1.3.4. Molecular regulations of survivin in cancer cells 8 1.3.5. Survivin and autophagy 9 1.4. MicroRNAs and cancers 9 1.4.1. Introduction of microRNAs (miRNAs) 9 1.4.2. MicroRNA and breast cancer 10 1.4.3. microRNA-125a-5p 10 1.5. Aims of this study 11 MATERIALS AND METHODS 12 2.1. Materials 13 2.2. Recipes 16 2.3. Methods 18 2.3.1. Cells and culture 18 2.3.2. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay 19 2.3.3. Lactate dehydrogenase (LDH) cell cytotoxicity assay 19 2.3.4. Gene silencing by siRNA 20 2.3.5. Western blot analysis 20 2.3.6. RNA extraction and quantitative real time PCR analysis 21 2.3.7. TaqMan miRNA Assay 22 2.3.8. Transfection of the plasmid DNA 22 2.3.9. Immunofluorescence microscopy 23 2.3.10. Protein stability Assay 24 2.3.11. Kaplan-Meier survival analysis 24 2.3.12. Statistic analysis 24 RESULTS 25 3.1. Estrogen-independent MCF7-TamC3 cells exhibit increased expression of HDAC2, HDAC3 and HDAC5 as compare to the parental MCF7 cells 26 3.2. Down-regulation of HDAC2 and HDAC5 partially restores the sensitivity to tamoxifen and increases the sensitivity to estrogen-deprivation in MCF7-TamC3 cells 26 3.3. MCF7-TamC3 cells exhibit increased activation of the pro-survival Akt-mTOR-survivin signaling pathway 27 3.4. Down-regulation of survivin partially restores the sensitivity to tamoxifen and increases the sensitivity to estrogen-deprivation in MCF7-TamC3 cells 29 3.5. MCF7-TamC3 cells exhibit increased Sp1 and decreased p53 expressions as compare to MCF7 cells 30 3.6. MCF7-TamC3 cells exhibit decreased expression of the tumor suppressor, miR-125a-5p, as compare to MCF7 cells 31 DISCUSSION & 33 CONCLUSIONS 33 4.1. Discussion 34 4.2. Conclusions 37 REFERENCES 38 TABLES 54 FIGURES 58 APPENDICES 80

    Ali, S., Rasool, M., Chaoudhry, H., Pushparaj, P. N., Jha, P., Hafiz, A., . . . Bashir, S. (2016). Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation, 12(3), 135-139.
    Alers, S., Loffler, A. S., Wesselborg, S., & Stork, B. (2012). Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks. Molecular and Cellular Biology, 32(1), 2-11.
    Angiolilli, C., Grabiec, A. M., Ferguson, B. S., Ospelt, C., Fernandez, B. M., van Es, I. E., . . . Tak, P. P. (2016). Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Annals of the rheumatic diseases, 75(2), 430-438.
    Aran, D., Sabato, S., & Hellman, A. (2013). DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome biology, 14(3), R21.
    Bacci, M., Giannoni, E., Fearns, A., Ribas, R., Gao, Q., Taddei, M. L., . . . Morandi, A. (2016). miR-155 Drives Metabolic Reprogramming of ER+ Breast Cancer Cells Following Long-Term Estrogen Deprivation and Predicts Clinical Response to Aromatase Inhibitors. Cancer Res, 76(6), 1615-1626.
    Bailey, S. T., Shin, H., Westerling, T., Liu, X. S., & Brown, M. (2012). Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci U S A, 109(44), 18060-18065.
    Banerjee, S., Cui, H., Xie, N., Tan, Z., Yang, S., Icyuz, M., . . . Liu, G. (2013). miR-125a-5p regulates differential activation of macrophages and inflammation. Journal of Biological Chemistry, 288(49), 35428-35436.
    Berger, C., Qian, Y., & Chen, X. (2013). The p53-estrogen receptor loop in cancer. Curr Mol Med, 13(8), 1229-1240.
    Blander, G., & Guarente, L. (2004). The Sir2 family of protein deacetylases. Annual review of biochemistry, 73(1), 417-435.
    Britton, D. J., Hutcheson, I. R., Knowlden, J. M., Barrow, D., Giles, M., McClelland, R. A., . . . Nicholson, R. I. (2006). Bidirectional cross talk between ERα and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast cancer research and treatment, 96(2), 131-146.
    Buckbinder, L., Talbott, R., Velasco-Miguel, S., Takenaka, I., Faha, B., Seizinger, B. R., & Kley, N. (1995). Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature, 377(6550), 646-649.
    Bursch, W., Ellinger, A., Kienzl, H., Torok, L., Pandey, S., Sikorska, M., . . . Hermann, R. S. (1996). Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis, 17(8), 1595-1607.
    Cameron, D. A., Ritchie, A. A., Langdon, S., Anderson, T. J., & Miller, W. R. (1997). Tamoxifen induced apoptosis in ZR-75 breast cancer xenografts antedates tumour regression. Breast Cancer Research and Treatment, 45(2), 99-107.
    Cande, C., Vahsen, N., Garrido, C., & Kroemer, G. (2004). Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ, 11(6), 591-595.
    Cao, C., Vasilatos, S. N., Bhargava, R., Fine, J. L., Oesterreich, S., Davidson, N. E., & Huang, Y. (2017). Functional Interaction of Histone Deacetylase 5 (HDAC5) and Lysine-specific Demethylase 1 (LSD1) Promotes Breast Cancer Progression. Oncogene, 36(1), 133-145.
    Carrington, J. C., & Ambros, V. (2003). Role of microRNAs in plant and animal development. Science, 301(5631), 336-338.
    Ceccacci, E., & Minucci, S. (2016). Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. British journal of cancer.
    Chen, D. Q., Pan, B. Z., Huang, J. Y., Zhang, K., Cui, S. Y., De, W., . . . Chen, L. B. (2014). HDAC 1/4-mediated silencing of microRNA-200b promotes chemoresistance in human lung adenocarcinoma cells. Oncotarget, 5(10), 3333-3349.
    Chen, Y., Wang, X., Li, W., Zhang, H., Zhao, C., Li, Y., . . . Chen, C. (2011). Sp1 upregulates survivin expression in adenocarcinoma of lung cell line A549. Anat Rec (Hoboken), 294(5), 774-780.
    Cheng, S. M., Chang, Y. C., Liu, C. Y., Lee, J. Y., Chan, H. H., Kuo, C. W., . . . Cheung, C. H. (2015). YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br J Pharmacol, 172(1), 214-234.
    Cheung, C. H., Huang, C. C., Tsai, F. Y., Lee, J. Y., Cheng, S. M., Chang, Y. C., . . . Chang, J. Y. (2013). Survivin - biology and potential as a therapeutic target in oncology. Onco Targets Ther, 6, 1453-1462.
    Cho, K. S., Yoon, Y. H., Choi, J. A., Lee, S. J., & Koh, J. Y. (2012). Induction of Autophagy and Cell Death by Tamoxifen in Cultured Retinal Pigment Epithelial and Photoreceptor Cells. Investigative Ophthalmology & Visual Science, 53(9), 5344-5353.
    Cho, Y., Sloutsky, R., Naegle, K. M., & Cavalli, V. (2013). Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell, 155(4), 894-908.
    Cittelly, D. M., Das, P. M., Salvo, V. A., Fonseca, J. P., Burow, M. E., & Jones, F. E. (2010). Oncogenic HER2Δ16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis, 31(12), 2049-2057.
    De Ruijter, A. J., Van Gennip, A. H., Caron, H. N., Stephan, K., & Van Kuilenburg, A. B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochemical Journal, 370(3), 737-749.
    Derr, R. S., van Hoesel, A. Q., Benard, A., Goossens-Beumer, I. J., Sajet, A., Dekker-Ensink, N. G., . . . Kuppen, P. J. K. (2014). High nuclear expression levels of histone-modifying enzymes LSD1, HDAC2 and SIRT1 in tumor cells correlate with decreased survival and increased relapse in breast cancer patients. BMC Cancer, 14.
    Dumay, A., Feugeas, J. P., Wittmer, E., Lehmann-Che, J., Bertheau, P., Espie, M., . . . de The, H. (2013). Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer, 132(5), 1227-1231.
    Early Breast Cancer Trialists' Collaborative, G. (2011). Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. The Lancet, 378(9793), 771-784.
    Fassan, M., Pizzi, M., Realdon, S., Balistreri, M., Guzzardo, V., Zagonel, V., . . . Rugge, M. (2013). The HER2-miR125a5p/miR125b loop in gastric and esophageal carcinogenesis. Hum Pathol, 44(9), 1804-1810.
    Gilani, R. A., Kazi, A. A., Shah, P., Schech, A. J., Chumsri, S., Sabnis, G., . . . Brodie, A. H. (2012). The importance of HER2 signaling in the tumor-initiating cell population in aromatase inhibitor-resistant breast cancer. Breast cancer research and treatment, 135(3), 681-692.
    Graham, C. D., Kaza, N., Klocke, B. J., Gillespie, G. Y., Shevde, L. A., Carroll, S. L., & Roth, K. A. (2016). Tamoxifen Induces Cytotoxic Autophagy in Glioblastoma. Journal of Neuropathology and Experimental Neurology, 75(10), 946-954.
    Goswami, C. P., & Nakshatri, H. (2012). PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data. Journal of Clinical Bioinformatics, 2(1), 23.
    Györffy, B., Lanczky, A., Eklund, A. C., Denkert, C., Budczies, J., Li, Q., & Szallasi, Z. (2010). An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Research and Treatment, 123(3), 725-731.
    Győrffy, B., Bottai, G., Lehmann-Che, J., Kéri, G., Őrfi, L., Iwamoto, T., . . . Santarpia, L. (2014). TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers. Molecular Oncology, 8(3), 508-519.
    Gray, S. G., & Ekstrom, T. J. (2001). The human histone deacetylase family. Exp Cell Res, 262(2), 75-83.
    Guha, M., & Altieri, D. C. (2009). Survivin as a global target of intrinsic tumor suppression networks. Cell Cycle, 8(17), 2708.
    Guo, R., Wang, T., Shen, H., Ge, H. M., Sun, J., Huang, Z. H., & Shu, Y. Q. (2010). Involvement of mTOR and survivin inhibition in tamoxifen-induced apoptosis in human hepatoblastoma cell line HepG2. Biomedicine & Pharmacotherapy, 64(4), 249-253.
    Han, G., Gong, H. J., Wang, Y. D., Guo, S. W., & Liu, K. (2015). AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell. Cancer Biology & Therapy, 16(1), 77-87.
    He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5(7), 522-531.
    He, P., Liang, J., Shao, T., Guo, Y., Hou, Y., & Li, Y. (2015). HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression. Int J Clin Exp Med, 8(4), 6510-6516.
    Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J., & Murphy, M. (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem, 277(5), 3247-3257.
    Hsieh, T.-H., Hsu, C.-Y., Tsai, C.-F., Long, C.-Y., Chai, C.-Y., Hou, M.-F., . . . Tsai, E.-M. (2015). miR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget, 6(1), 494.
    Hsieh, T.-H., Hsu, C.-Y., Tsai, C.-F., Long, C.-Y., Wu, C.-H., Wu, D.-C., . . . Tsai, E.-M. (2015). HDAC inhibitors target HDAC5, upregulate microRNA-125a-5p, and induce apoptosis in breast cancer cells. Molecular Therapy, 23(4), 656-666.
    Huang, B. H., Laban, M., Leung, C. H. W., Lee, L., Lee, C. K., Salto-Tellez, M., . . . Hooi, S. C. (2005). Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1//WAF1 expression, independent of histone deacetylase 1. Cell Death Differ, 12(4), 395-404.
    Hussain, A. R., Ahmed, M., Bu, R., Beg, S., Alrashed, A. M., Melosantos, R., . . . AlKuraya, K. S. (2015). Xiap over-expression is a poor prognostic marker in breast cancer and can be targeted to induce efficient apoptosis: AACR.
    Jansen, M. P., Knijnenburg, T., Reijm, E. A., Simon, I., Kerkhoven, R., Droog, M., . . . Zwart, W. (2013). Hallmarks of aromatase inhibitor drug resistance revealed by epigenetic profiling in breast cancer. Cancer Res, 73(22), 6632-6641.
    Jeyaprakash, A. A., Klein, U. R., Lindner, D., Ebert, J., Nigg, E. A., & Conti, E. Structure of a Survivin;Borealin;INCENP Core Complex Reveals How Chromosomal Passengers Travel Together. Cell, 131(2), 271-285.
    Jiang, L., Huang, Q., Zhang, S., Zhang, Q., Chang, J., Qiu, X., & Wang, E. (2010). Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer, 10(1), 318.
    Jiao, F., Hu, H., Yuan, C. C., Jin, Z. L., Guo, Z., Wang, L. W., & Wang, L. (2014). Histone deacetylase 3 promotes pancreatic cancer cell proliferation, invasion and increases drug-resistance through histone modification of P27, P53 and Bax. Int J Oncol, 45(4), 1523-1530.
    Jordan, V. C. (1997). Tamoxifen: the herald of a new era of preventive therapeutics: Oxford University Press.
    Keshelava, N., Davicioni, E., Wan, Z., Ji, L., Sposto, R., Triche, T. J., & Reynolds, C. P. (2007). Histone deacetylase 1 gene expression and Sensitization of multidrug-resistant neuroblastoma cell lines to cytotoxic agents by depsipeptide. Journal of the National Cancer Institute, 99(14), 1107-1119.
    Lee, J. Y. C., Kuo, C. W., Tsai, S. L., Cheng, S. M., Chen, S. H., Chan, H. H., . . . Cheung, C. H. A. (2016). Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Front Pharmacol, 7.
    Leong, S. P. L., Shen, Z. Z., Liu, T. J., Agarwal, G., Tajima, T., Paik, N. S., . . . Foulkes, W. D. (2010). Is Breast Cancer the Same Disease in Asian and Western Countries? World J Surg, 34(10), 2308-2324.
    Leung, E., & Baguley, B. C. (2013). mTOR signaling in endocrine resistance growth control. In G. Fung (Ed.), Cervical, Breast and Prostate Cancer (pp. 193-213): iConcept Press Ltd.
    Leung, E., Kannan, N., Krissansen, G. W., Findlay, M. P., & Baguley, B. C. (2010). MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biol Ther, 9(9), 717-724.
    Li, A., Liu, Z., Li, M., Zhou, S., Xu, Y., Xiao, Y., & Yang, W. (2016). HDAC5, a potential therapeutic target and prognostic biomarker, promotes proliferation, invasion and migration in human breast cancer. Oncotarget, 7(25), 37966-37978.
    Lu, J., Tan, M., Huang, W. C., Li, P., Guo, H., Tseng, L. M., . . . Yu, D. (2009). Mitotic deregulation by survivin in ErbB2-overexpressing breast cancer cells contributes to Taxol resistance. Clin Cancer Res, 15(4), 1326-1334.
    Müller, B. M., Jana, L., Kasajima, A., Lehmann, A., Prinzler, J., Budczies, J., . . . Denkert, C. (2013). Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer - overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer, 13, 215.
    Marks, P. A., Rifkind, R. A., Richon, V. M., Breslow, R., Miller, T., & Kelly, W. K. (2001). Histone deacetylases and cancer: causes and therapies. Nature Reviews Cancer, 1(3), 194-202.
    Massarweh, S., Osborne, C. K., Creighton, C. J., Qin, L., Tsimelzon, A., Huang, S., . . . Schiff, R. (2008). Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res, 68(3), 826-833.
    Milde, T., Oehme, I., Korshunov, A., Kopp-Schneider, A., Remke, M., Northcott, P., . . . Witt, O. (2010). HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res, 16(12), 3240-3252.
    Miller, W. R. (2003). Aromatase inhibitors: mechanism of action and role in the treatment of breast cancer. Semin Oncol, 30(4 Suppl 14), 3-11.
    Miller, W. R., & Larionov, A. A. (2012). Understanding the mechanisms of aromatase inhibitor resistance. Breast Cancer Research, 14(1).
    Mirza, A., McGuirk, M., Hockenberry, T. N., Wu, Q., Ashar, H., Black, S., . . . Liu, S. X. (2002). Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene, 21(17), 2613-2622.
    Morad, S., Madigan, J., Rosenberg, D. W., Kester, M., Shanmugavelandy, S. S., & Cabot, M. C. (2012). Tamoxifen enhances chemotherapeutic efficacy of C6-ceramide and increases induction of apoptosis in human colorectal cancer cells by upregulation of MAPK signaling pathway and down-regulation of inhibitor of apoptosis protein, survivin. Faseb Journal, 26.
    Moradzadeh, M., Tabarraei, A., & Sadeghnia, H. R. (2015). The Role of Histone Deacetylase (HDAC) as a Biomarker in Cancer. Journal of Molecular Biomarkers & Diagnosis, 6(4), 1.
    Murata, K., Furu, M., Yoshitomi, H., Ishikawa, M., Shibuya, H., Hashimoto, M., . . . Mimori, T. (2013). Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS One, 8(7), e69118.
    Ni, T., Li, W., & Zou, F. (2005). The ubiquitin ligase ability of IAPs regulates apoptosis. IUBMB life, 57(12), 779-785.
    Nishida, N., Mimori, K., Fabbri, M., Yokobori, T., Sudo, T., Tanaka, F., . . . Mori, M. (2011). MicroRNA-125a-5p Is an Independent Prognostic Factor in Gastric Cancer and Inhibits the Proliferation of Human Gastric Cancer Cells in Combination with Trastuzumab. Clinical Cancer Research, 17(9), 2725-2733.
    Noh, J. H., Bae, H. J., Eun, J. W., Shen, Q., Park, S. J., Kim, H. S., . . . Nam, S. W. (2014). HDAC2 provides a critical support to malignant progression of hepatocellular carcinoma through feedback control of mTORC1 and AKT. Cancer Res, 74(6), 1728-1738.
    Nomura, T., Yamasaki, M., Nomura, Y., & Mimata, H. (2005). Expression of the inhibitors of apoptosis proteins in cisplatin-resistant prostate cancer cells. Oncology reports, 14(4), 993-997.
    Papanikolaou, V., Iliopoulos, D., Dimou, I., Dubos, S., Kappas, C., Kitsiou-Tzeli, S., & Tsezou, A. (2011). Survivin regulation by HER2 through NF-B and c-myc in irradiated breast cancer cells. Journal of Cellular and Molecular Medicine, 15(7), 1542-1550.
    Park, S., Koo, J., Park, H., Kim, J.-H., Choi, S.-Y., Lee, J., . . . Lee, K. (2010). Expression of androgen receptors in primary breast cancer. Annals of oncology, 21(3), 488-492.
    Pattingre, S., Tassa, A., Qu, X. P., Garuti, R., Liang, X. H., Mizushima, N., . . . Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6), 927-939.
    Pedersen, A. M., ThRANE, S., Lykkesfeldt, A. E., & Yde, C. W. (2014). Sorafenib and nilotinib resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen receptor α. International journal of oncology, 45(5), 2167-2175.
    Peixoto, P., Castronovo, V., Matheus, N., Polese, C., Peulen, O., Gonzalez, A., . . . Mottet, D. (2012). HDAC5 is required for maintenance of pericentric heterochromatin, and controls cell-cycle progression and survival of human cancer cells. Cell Death Differ, 19(7), 1239-1252.
    Peng, Y., & Croce, C. M. (2016). The role of MicroRNAs in human cancer. 1, 15004.
    Puissant, A., Fenouille, N., & Auberger, P. (2012). When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res, 2(4), 397-413.
    Raj, D., Liu, T., Samadashwily, G., Li, F., & Grossman, D. (2008). Survivin repression by p53, Rb and E2F2 in normal human melanocytes. Carcinogenesis, 29(1), 194-201.
    Ren, J., Jin, P., Wang, E., Marincola, F. M., & Stroncek, D. F. (2009). MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med, 7, 20.
    Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L., & Bradley, A. (2004). Identification of Mammalian microRNA Host Genes and Transcription Units. Genome Res, 14(10a), 1902-1910.
    Ruchaud, S., Carmena, M., & Earnshaw, W. C. (2007). Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol, 8(10), 798-812.
    Seo, S. K., Hwang, C. S., Choe, T. B., Hong, S. I., Yi, J. Y., Hwang, S. G., . . . Park, I. C. (2015). Selective inhibition of histone deacetylase 2 induces p53-dependent survivin downregulation through MDM2 proteasomal degradation. Oncotarget, 6(28), 26528-26540.
    Shin, I., Miller, T., & Arteaga, C. L. (2006). ErbB receptor signaling and therapeutic resistance to aromatase inhibitors. Clinical Cancer Research, 12(3), 1008s-1012s.
    Shin, S., Sung, B. J., Cho, Y. S., Kim, H. J., Ha, N. C., Hwang, J. I., . . . Oh, B. H. (2001). An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 40(4), 1117-1123.
    Shou, J., Massarweh, S., Osborne, C. K., Wakeling, A. E., Ali, S., Weiss, H., & Schiff, R. (2004). Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2–positive breast cancer. Journal of the National Cancer Institute, 96(12), 926-935.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a cancer journal for clinicians, 66(1), 7-30.
    Silke, J., & Vucic, D. (2013). IAP family of cell death and signaling regulators. Methods in enzymology, 545, 35-65.
    Song, Z., Yao, X., & Wu, M. (2003). Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem, 278(25), 23130-23140.
    Stronach, E. A., Alfraidi, A., Rama, N., Datler, C., Studd, J. B., Agarwal, R., . . . Gabra, H. (2011). HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Research, 71(13), 4412-4422.
    Sun, X. P., Dong, X., Lin, L., Jiang, X., Wei, Z., Zhai, B., . . . Sun, X. (2014). Up-regulation of survivin by AKT and hypoxia-inducible factor 1alpha contributes to cisplatin resistance in gastric cancer. Febs Journal, 281(1), 115-128.
    Takai, N., Kawamata, N., Walsh, C. S., Gery, S., Desmond, J. C., Whittaker, S., . . . Koeffler, H. P. (2005). Discovery of epigenetically masked tumor suppressor genes in endometrial cancer. Mol Cancer Res, 3(5), 261-269.
    Tamm, I., Kornblau, S. M., Segall, H., Krajewski, S., Welsh, K., Kitada, S., . . . Monks, A. (2000). Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clinical Cancer Research, 6(5), 1796-1803.
    Tong, Z., Liu, N., Lin, L., Guo, X., Yang, D., & Zhang, Q. (2015). miR-125a-5p inhibits cell proliferation and induces apoptosis in colon cancer via targeting BCL2, BCL2L12 and MCL1. Biomedicine & Pharmacotherapy, 75, 129-136.
    Trivedi, C. M., Luo, Y., Yin, Z., Zhang, M. Z., Zhu, W. T., Wang, T., . . . Epstein, J. A. (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med, 13(3), 324-331.
    Vaira, V., Lee, C. W., Goel, H. L., Bosari, S., Languino, L. R., & Altieri, D. C. (2007). Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene, 26(19), 2678-2684.
    Vequaud, E., Seveno, C., Loussouarn, D., Engelhart, L., Campone, M., Juin, P., & Barille-Nion, S. (2015). YM155 potently triggers cell death in breast cancer cells through an autophagy-NF-B network. Oncotarget, 6(15), 13476-13486.
    Viedma-Rodriguez, R., Baiza-Gutman, L., Salamanca-Gomez, F., Diaz-Zaragoza, M., Martinez-Hernandez, G., Esparza-Garrido, R. R., . . . Arenas-Aranda, D. (2014). Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (Review). Oncology Reports, 32(1), 3-15.
    Wang, S., Huang, J., Lyu, H., Lee, C., Tan, J., Wang, J., & Liu, B. (2013). Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis, 4(3), e556.
    Wang, Y., Chen, L., Wu, Z., Wang, M., Jin, F., Wang, N., . . . Zen, K. (2016). miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer, 16(1), 826.
    Wang, Z., Hu, P., Tang, F., Lian, H., Chen, X., Zhang, Y., . . . Xie, C. (2016). HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett, 379(1), 134-142.
    Wang, Z. H., Hu, P. C., Tang, F., Lian, H. W., Chen, X., Zhang, Y. Y., . . . Xie, C. H. (2016). HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett, 379(1), 134-142.
    Xu, R., Zhang, P., Huang, J., Ge, S., Lu, J., & Qian, G. (2007). Sp1 and Sp3 regulate basal transcription of the survivin gene. Biochem Biophys Res Commun, 356(1), 286-292.
    Xu, Y. J., Huang, Z. X., & Liu, Y. L. (2014). Reduced miR-125a-5p expression is associated with gastric carcinogenesis through the targeting of E2F3. Molecular Medicine Reports, 10(5), 2601-2608. Yamamoto, H., Ngan, C. Y., & Monden, M. (2008). Cancer cells survive with survivin. Cancer Science, 99(9), 1709-1714.
    Yuan, J., Xiao, G., Peng, G., Liu, D., Wang, Z., Liao, Y., . . . Yuan, X. (2015). MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ. Biochem Biophys Res Commun, 457(2), 171-176.
    Zhang, S., Ding, F., Luo, A., Chen, A., Yu, Z., Ren, S., . . . Zhang, L. (2007). XIAP is highly expressed in esophageal cancer and its downregulation by RNAi sensitizes esophageal carcinoma cell lines to chemotherapeutics. Cancer biology & therapy, 6(6), 974-979.
    Zhang, Y., Moerkens, M., Ramaiahgari, S., de Bont, H., Price, L., Meerman, J., & van de Water, B. (2011). Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res, 13(3), R52.
    Zhao, H., Yu, Z., Zhao, L., He, M., Ren, J., Wu, H., . . . Wei, M. (2016). HDAC2 overexpression is a poor prognostic factor of breast cancer patients with increased multidrug resistance-associated protein expression who received anthracyclines therapy. Jpn J Clin Oncol, 46(10), 893-902.
    Zhao, P., Meng, Q., Liu, L. Z., You, Y. P., Liu, N., & Jiang, B. H. (2010). Regulation of survivin by PI3K/Akt/p70S6K1 pathway. Biochem Biophys Res Commun, 395(2), 219-224.
    Zheng, J., Zhou, Z., Xu, Z., Li, G., Dong, P., Chen, Z., . . . Yu, F. (2015). Serum microRNA-125a-5p, a useful biomarker in liver diseases, correlates with disease progression. Mol Med Rep, 12(1), 1584-1590.
    Zhu, J., Lu, X., Hua, K.-Q., Sun, H., Yu, Y.-H., & Feng, Y.-J. (2012). Oestrogen receptor α mediates 17β-estradiol enhancement of ovarian cancer cell motility through up-regulation of survivin expression. Archives of Gynecology and Obstetrics, 286(3), 729-737.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE