簡易檢索 / 詳目顯示

研究生: 林育詮
Lin, Yu-Chuan
論文名稱: 三族氮化物半導體於光電解水產氫之研究
Hydrogen Generation from Aqueous Water through Photoelectrolysis Using Ⅲ-Nitrides Semiconductor as Working Electrodes
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 氫氣產生氮化鎵光電解水光電化學反應
外文關鍵詞: hydrogen generation, GaN, Photoelectrolysis, PEC reaction
相關次數: 點閱:73下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是利用三族氮化物半導體材料當作光電解水產氫的工作電極,在照光的情況下將水分解成氫氣與氧氣。除了透過外部製程的改良、也從磊晶結構方面去做不同的變化,來增進氫氣產生的效率。
    首先在n型氮化鎵(n-GaN)工作電極之歐姆電極上製做指叉狀浸入式電極的設計,來增加光載子的汲取效率與增強電場對工作電極的活化效果。同時我們比較金屬鉻金(Cr/Au)與氧化銦錫(ITO)浸入式電極兩種材料的優缺點,發現Cr/Au電極在光電化學(PEC)反應後幾乎損毀,而ITO電極不僅透光,且在長時間反應下結構仍然很完整、穩定性佳。因此,我們也把ITO浸入式電極應用在高電阻率的p型氮化鎵(p-GaN)上,成功地提高了光電流密度,同時也能降低產氫電壓。也因為p-GaN具有不會被光腐蝕(Photo corrosion)的特性,所以我們更可以利用增加光強度的方式來提高光電流密度,加速氫氣產生速率。
    另外,我們在氮化鎵磊晶時摻入過渡元素錳(Mn),發現其產生的雜質能帶可使材料吸收能量小於氮化鎵能隙(3.4 eV)的光子,並且能夠在可見光照射之下產生氫氣。然而,雖然摻雜錳使得材料的吸收光譜變寬,但因為其高電阻率與材料品質下降,也導致光載子容易被復合,使元件在全波段照射時之光電化學特性比沒有摻雜錳的元件來得差。

    Ⅲ- Nitrides Semiconductor was used as working electrodes to generate hydrogen gas through water splitting under illumination. In this study, we promoted the efficiency of hydrogen generation by improving the processes and varying epitaxy structure.
    First, immersed ohmic electrodes were fabricated on n-type Gallium Nitride (n-GaN). This design can improve the collection efficiencies of photo-generated carriers and enhance the activation effect of the electric field on working electrodes. Simultaneously, we compared the performance of immersed finger-type Cr/Au and ITO ohmic electrodes for the photoelectrochemical (PEC) reaction. We found that the immersed finger-type Cr/Au ohmic electrodes were damaged. In contrast, the immersed finger-type ITO ohmic electrodes were both transparent and stable. Therefore, we also used immersed finger-type ITO ohmic electrodes to increase the photocurrent density and reduce the applied voltage for hydrogen generation of p-GaN working electrodes. Because p-GaN had no photo corrosion after PEC reaction, the photocurrent density could be improved via intense light irradiation.
    On the other hand, Mn elements were doped in u-GaN samples. By this way, the sample could absorb the photons with smaller energy than the energy band gap of GaN (3.4 eV) and generate hydrogen gas under visible light irradiation. Although Mn-doped GaN has broader absorption spectrum than GaN materials, the higher resistivity and worse crystal qualities resulted in inferior PEC characteristics under entire spectrum illumination.

    摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 理論基礎 8 2.1 半導體光伏特原理簡介 (PV) 8 2.2 半導體光電化學原理簡介 (PEC) 9 2.2.1 簡介 9 2.2.2 電解液之費米能階 10 2.2.3 半導體與電解液之接面 11 2.2.4 平帶電位 (Flat Band Potential) 12 2.2.5 光電流形成的機制 14 2.2.6 光電解水產氫機制 14 第三章 研究方法與元件備製 30 3.1 實驗裝置 30 3.2 量測方法 31 3.2.1 電流-電壓特性曲線 31 3.2.2 光電流頻譜響應 32 3.2.3 氣體收集 33 3.3 光電化學元件製作 33 3.3.1 元件結構 33 3.3.2 試片清潔 34 3.3.3 製程步驟 36 第四章 實驗結果分析與討論 45 4.1 利用指叉狀浸入式電極改善氮化鎵光電解水製氫之研究 45 4.1.1 指叉狀浸入式電極製程之優化 45 4.1.2 金屬與氧化銦錫指叉狀浸入式電極應用於氮化鎵工作電極之光電化學特性比較 46 4.1.3 金屬與氧化銦錫指叉狀浸入式電極於光電化學反應之穩定性比較 49 4.2 p型氮化鎵於光電解水製氫之研究 51 4.2.1 利用氧化銦錫指叉狀浸入式電極改善p型氮化鎵之光電化學特性 52 4.2.2 不同p型氮化鎵厚度對於光電化學特性之影響 54 4.2.3 p型氮化鎵於光電化學反應後之表面狀態 55 4.3 錳摻雜於氮化鎵材料應用在光電解水製氫之研究 56 4.3.1 錳摻雜於氮化鎵材料之理論簡介 57 4.3.2 錳摻雜於氮化鎵材料之穿透率量測分析 58 4.3.3 錳摻雜於氮化鎵材料之光電流頻譜響應分析 59 4.3.4 錳摻雜於氮化鎵材料之光電化學特性分析 61 第五章 結論與未來展望 81 5.1 結論 81 5.2 未來展望 82 參考文獻 84

    【1】 C. E. Thomas, B. D. James and F. D. Lomax, “Market penetration scenarios for fuel cell vehicles”, Int. J. Hydrogen Energy, vol. 23, pp. 949–966, 1998.
    【2】 Abdelhak Bensaoula and Chris Boney, ISSO-UH/UHCL/NASA, 2005.
    【3】 C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, J. Appl. Phys., vol. 51, no. 8, pp. 4494- 4500, 1980.
    【4】 許進恭, “氮化物半導體高效率全波段太陽能電池及太陽能光電解氫氣生成元件之研究”, 國科會計畫 NSC 93-2215-E-006-036, 2008.
    【5】 Veziroglu, T. N. Veziroglu, “Dawn of the hydrogen age”, Int. J. Hydrogen Energy, vol. 23, pp. 1077–1978, 1998.
    【6】 Bockris, J.O’M. Bockris, T.N. Veziroglu and D. Smith, Solar hydrogen energy. The power to save the earth, Optima series, The Guernsey Press, UK, pp. 77–89, 1991.
    【7】 T. Bak, J. Nowotny, M. Rekas and C. C. Sorrell, “Photo- electrochemical hydrogen generation from water using solar energy”, Int. J. Hydrogen Energy, vol.27, pp. 991–1022, 2002.
    【8】 Fujishima, K. Kohayakawa and K. Honda, “Hydrogen production under sunlight with an electrochemical photocell”, J. Electrochem. Soc. vol. 122, pp. 1487–1489, 1975 .
    【9】 A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, vol. 238, pp. 37–38, 1972.
    【10】A. J. Nozik and R. Memming, “Physical Chemistry of Semiconductor −liquid Interfaces”, J. Phys. Chem., vol. 100, no. 13, pp. 13061-13078, 1996.
    【11】A. J. Nozik, “Electrode materials for photoelectrochemical devices”, Journal of Crystal Growth, vol.39, no. 1, pp.200-209, 1977.
    【12】R. C. Kainthla, B. Zelenay, and J. O’M. Bockris, “Significant Efficiency Increase in Self-Driven Photoelectrochemical Cell for Water Photoelectrolysis”, Journal of The Electrochemical Society, vol. 134, no. 4, pp. 841-845, 1987.
    【13】K. Fujii, T. Karasawa and K. Oshawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation”, Jpn. J. Appl. Phys., vol. 44, pp. L543-L545, 2005.
    【14】J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu and W. J. Schaff, “Small band gap bowing in In1-xGaxN alloys”, Applied Physics Letters, vol. 80, no. 25, pp. 4741-4743, 2002.
    【15】J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu and William J. Schaff, “Effects of the narrow band gap on the properties of InN”, Phys. Rev. B, vol. 66, no. 20, 2002.
    【16】K. Fujii, K. Ohkawa, “Bias-Assisted H2 Gas Generation in HCl and KOH Solutions Using n-Type GaN Photoelectrode”, Journal of The Electrochemical Society, vol. 153, no. 3, pp. A468-A471, 2006.
    【17】Newman J. S., “Electrochemical Systems”, Prentice Hall, Englewood Cliffs, NJ, 1973.
    【18】波利斯科夫, “光電化學太陽能轉換”, 科學出版, 1994.
    【19】A. J. Bard, M. Stratmann, S. Licht, “Encyclopedia of Electrochemistry, Semiconductor Electrodes and Photoelectrochemistry”, John Wiley & Sons, Inc., Volume 6, 2002.
    【20】C. A.Grimes, O. K. Varghese, S. Ranian, “Light, Water, Hydrogen-The Solar Generation of Hydrogen by Water Photoelectrolysis”, Springer, 2008.
    【21】K. Fujii, M. Ono, T. Ito, Y. Iwaki, A. Hirako and K. Ohkawa, “Band-Edge Energies and Photoelectrochemical Propertiesof n-Type AlxGa1−xN and InyGa1−yN Alloys”, J. Electrochem. Soc., vol. 154, no. 2, pp. B175-B179, 2007.
    【22】A. W. Bott, “Electrochemistry of Semiconductors”, Current Separa- tions, vol. 17, no. 3, pp. 87-91, 1998.
    【23】S. R. Morrison, “Electrochemistry at semiconductor and oxidized metal electrodes”, Plenum Press, 1980.
    【24】M. Schiavello, “Photoelectrochemistry, photocatalysis, and photoreactors:fundamentals and developments”, 1984.
    【25】J. Nozik, “Physical Chemistry of Semiconductor−Liquid Interfaces”, J. Phys. Chem., vol. 100, pp. 13061–13078, 1996.
    【26】M. Tomkiewicz and H. Fay, “Photoelectrolysis of water with semiconductors”, Appl. Phys., vol. 18, no. 1, pp. 1-28, 1979.
    【27】Michael Grätzel, “Photoelectrochemical cells”, Nature, vol. 414, pp. 338-344, 2001.
    【28】顏政雄, “奈米金粒子修飾氮化鎵電極之光電化學特性及其在直接
    光照水分解產氫之應用”, 國立臺灣海洋大學光電科學研究所碩士論文, 2009.
    【29】M. Ono, K. Fujii, T. Ito and Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN”, J. Chem. Phys., vol. 126, no. 5, pp. 054708-054708-7, 2007.
    【30】葉昭呈, “氮化鎵電極光電解水產氫之光電化學特性研究”, 國立成功大學光電科學與工程研究所碩士論文, 2010.
    【31】S. Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Laia, “Improved Hydrogen Gas Generation Rate of n-GaN Photoelectrode with SiO2 Protection Layer on the Ohmic Contacts from the Electrolyte”, J. Electrochem. Soc., vol. 157, no. 2, pp. B266-B268, 2010.
    【32】K. Fujii and K. Ohkawa, “Photoelectrochemical Properties of p-type GaN in Comparison with n-type GaN”, J. J. App. Phy., vol. 44, no. 28, pp. L909-L911, 2005.
    【33】P. Boguslawski and J. Bernholc, “Fermi-level effects on the electro- nic structure and magnetic couplings in (Ga, Mn) N”, Phys. Rev. B, vol. 72, no.11, pp. 115208-1115212, 2005.
    【34】N. Nepal, A. M. Mahros, S. M. Bedair, N. A. El-Masry and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett., vol. 91, no. 24, pp. 242502-242504, 2007.
    【35】R. Y. Korotkov, J. M. Gregie and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett., vol. 80, no. 10, pp. 1731-1733, 2002.
    【36】T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann and O. Ambacher, “The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett., vol. 81,no. 27, pp. 5159-5161, 2002.
    【37】R. Y. Korotkov, J. M. Gregie and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B, vol. 308, pp. 30-33, 2001.
    【38】F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M.Zavada and S. M. Bedair, “Materials Research Society Symposia Proceedings”, Materials Research Society, vol. 955, pp. 0955-I07-02, Pittsburgh, 2006.
    【39】A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, vol. 238, 1972.

    下載圖示 校內:2016-08-02公開
    校外:2016-08-02公開
    QR CODE