| 研究生: |
周奇緯 Chou, Chi-Wei |
|---|---|
| 論文名稱: |
Sn-8.5Zn-0.5Ag-0.1Ga-xAl無鉛銲錫合金之凝固微組織及熱物性質研究 A Study on the Solidification Microstructure and Thermo-physical Properties of Sn-8.5Zn-0.5Ag-0.1Ga-xAl Lead-Free Solder Alloys |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 凝固微組織 、熱傳導 、熱膨脹 、電腦輔助冷卻曲線分析 、無鉛銲錫 |
| 外文關鍵詞: | lead-free solder alloy, computer aided-cooling curve analysis, thermal conductivity, thermal expansion, solidification microstructure |
| 相關次數: | 點閱:110 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用各樣的實驗方法探討改變Al的重量百分比對Sn-8.5Zn-0.5Ag-0.1Ga-xAl銲錫合金的影響,探討添加量對凝固微組織、熔解熱、固液相溫度、兩相區間、合金的凝固模式和熱傳導及熱膨脹係數等熱物性質所造成的影響。
就Sn-8.5Zn-0.5Ag-0.1Ga-xAl銲錫合金的顯微組織觀察與分析,合金的金屬液凝固下來,Sn-8.5Zn-0.5Ag-0.1Ga合金會形成Ag-Zn介金屬化合物、針狀鋅與β-Sn的層狀共晶組織以及β-Sn基地;Sn-8.5Zn-0.5Ag-0.1Ga-xAl合金(x = 0.01、1、2、3、4)則會形成Ag-Zn介金屬化合物、Al-Zn固溶物、針狀鋅與β-Sn的層狀共晶組織及β-Sn基地。隨著Al的含量增加,Ag-Zn介金屬化合物減少,針狀鋅與β-Sn的層狀共晶組織增加。
除了Sn-8.5Zn-0.5Ag-0.1Ga-xAl合金的潛熱釋放模式為生成兩條垂直線,一條代表β-Sn的生成,一條代表Sn-9Zn共晶相的析出。隨著Al添加量的增加,代表β-Sn生成的垂直線消失,都只有呈現Sn-9Zn共晶相析出的垂直線,代表潛熱釋放模式趨向共晶。跟示差熱掃描分析圖的結果,顯示Al添加量的增加,峰值出現的溫度也是顯示出共晶形成的溫度。而液相溫度改變最大介於Al = 0~1.0wt%,之後,Al的添加量則無影響;固相溫度則有隨著Al的添加量變多而降低;溫度區間則以Al = 0wt%最大值,這與形成β-Sn及Sn-9Zn共晶相的析出造成溫度區間最大,而之後的Al = 0.01~4wt%,隨著Al的添加量變多,溫度區間則會先減少再增加的趨勢,溫度區間約略在3~4℃。
Sn-8.5Zn-0.5Ag-0.1Ga-xAl合金的熱傳導係數,就Al的添加量增加,傳導性質會有變佳的表現,原因或許出自於只改變鋁的添加量,Ag、Zn及Ga成分百分比未變,唯一變的成分是Sn,而Al的熱傳導係數大於Sn的結果所導致。
Sn-8.5Zn-0.5Ag-0.1Ga-xAl合金是顯示出瞬時熱膨脹係數在溫度區間30~40℃時,會快速上升,超過90℃時,瞬時熱膨脹係數約略為定值;而Sn-8.5Zn-0.5Ag-0.1Ga平均熱膨脹係數最高為26x10-6/K,Al = 2wt%時最小為21.7 x10-6/K,Al = 1、3、4wt%時則介於22~24 x10-6/K之間。雖然沒有趨勢說明添加Al的添加量對熱膨脹係數的影響,跟Sn-37Pb銲錫23.3x10-6/K相比的話,Al = 1、2、3wt%熱膨脹係數皆小於Sn-37Pb銲錫合金。
The solidification microstructure and the thermal physical properties of Sn-8.5Zn-0.5Ag-0.1Ga-xAl lead-free solder alloys, where x varies between 0.0 and 4.0 wt.%. A Computer Aided-Cooling Curve Analysis (CA-CCA) technique was used to determine the pasty ranges、liquidus temperature、solidus temperature and latent heat release modes for the alloys. The Differential scanning calorimetry was also used to measure fusion heat of alloys. The morphology of alloys and intermetallic compounds were observed with Scanning electron microscope and Electron probe microanalyzer. Energy dispersive spectrometer and Wave dispersive spectrometer were used to analyze the chemical compositions and elemental dispersion of intermetallic compounds. The thermal conductivity of The Sn-8.5Zn-0.5Ag-0.1Ga-xAl alloys is measured by thermal conductivity measurement. The CTE is measured by using a dilatometer with a heating rate of 1 ℃/min from 30 ℃ to 110 ℃. The effects of weight percentage of aluminum on the liquidus temperature, solidus temperature, pasty ranges, latent heat release modes, fusion heats and coefficient of thermal expansion and conductivity were investigated.
The solidification microstructure of the Sn-8.5Zn-0.5Ag-0.1Ga lead-free solder alloys shows β-AgZn, ε-AgZn3, γ-Ag5Zn8 and Zn-rich phases dispersed in the β-Sn matrix. As we add aluminum, the Al-Zn solid solution appears and become more and more. With the increased addition of Al, the Ag-Zn IMCs decrease but the eutectic Sn-Zn and Al-Zn phases increase.
The CACCA results show that as the aluminum content of the Sn-8.5Zn-0.5Ag-0.1Ga-xAl alloy increases, the solidus temperature rises and the pasty range broadens slightly. As long as the aluminum content is 0 wt%, the plot of the fs-T relationship shows two distinct vertical regions. One corresponds to the primary tin phase and the other to the eutectic phase. As the aluminum content increases, one vertical region corresponding to the primary tin disappears. The microstructure is basically the eutectic Sn-9Zn and the fs-T relationship is nearly a vertical line. This in turn causes the proportion of the primary tin phase to decrease and that of the zinc-tin eutectic phase to increase. As the aluminum content further increases, the effects of intermetallic compound formation become even more obvious. The Al-Zn phase diagram shows that, αAl solid solution has a maximum solubility of 67at% Zn at 382℃ but has a maximum solubility of 59.4at% Zn at 275℃. Also the diagram indicates that the solubility of αAl decreases as the temperature decreases. The results of WDS showed that the Al-Zn solid solution has only solubility of 6.5at% Zn at room temperature. Consequently, the released Zn reacts with Sn to form the more tin-zinc phase.
The thermal conductivity is increased with increasing the content of aluminum. The reason may be the thermal conductivity of aluminum is lager them that of tin. When the content of aluminum increased, that of tin decreased. The results also shows that Sn-8.5Zn-0.5Ag-0.1Ga-xAl (x>0) lead-free solder alloys have much better thermal conductivity than Sn-37Pb solder alloy.
The CTE is increased with increasing temperature. When the temperature between 30~40℃, the increase becomes sharply. When the temperature reaches 90℃, the increase becomes not so obvious. Furthermore, CTE doesn’t increase linearly with increasing aluminum content. As the aluminum contents are between 1~3wt%, the values of CTE are smaller than the conventional Sn-37Pb alloy and is near the copper.
J. S. Hwang, Implementing Lead-Free Electronics, McGraw-Hill Professional Publishing Corp., New York, USA, 2004.
K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys”, Journal of Electronic Materials, vol. 29, 2000, pp. 1122-1236.
T. Takemoto, T. Funaki and A. Matsunawa, “Electrochemical Investigation on the Effect of Silver Addition on Wettability of Sn-Zn System Lead-Free Solder”, Quarterly Journal of the Japan Welding Society, vol. 17, No. 2, 1999, pp. 251-258.
J. M. Song, G. F. Lan, T. S. Lui and L. H. Chen, “Microstructure and Tensile Properties of Sn–9Zn–xAg Lead-Free Solder Alloys”, Scripta Materialia, vol. 48, No. 8, 2003, pp. 1047-1051.
K. L. Lin and T. P. Liu, “High-Temperature Oxidation of a Sn-Zn-Al Solder”, Journal of Oxidation Metals, vol. 50, Nos. 3/4, 1998, pp. 255-267.
K. L. Lin and H. M. Hsu, “Sn-Zn-Al Pb-free Solder - An Inherent Barrier Solder for Cu Contact”, Journal of Electronic Materials, vol. 30, No. 9, 2001, pp. 1068-1072.
N. S. Liu and K. L. Lin, “Microstructure and Mechanical Properties of Low Ga Content Sn-8.55Zn-0.5Ag-0.1Al-xGa Solders“, Scripta Materialia, vol. 52, No. 5, March 2005, pp. 369-374.
M. Abtew and G. Selvaduray, “Lead-Free Solder in Microelectronics”, Journal of Materials Science and Engineering, vol. 27, 2000, pp. 95-141.
S. Kikuchi, M. Nishimura, K. Suetsugu, T. Ikari and K. Matsushige, “Strength of Bonding Interface in Lead-Free Sn Alloy Solders”, Materials Science and Engineering A - Structural Materials Properties Microstructure and Processing, vol. 319, 2001, pp. 475-479.
J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Materials Reviews, vol. 40, No. 2, 1995, pp. 65-93.
M. Nishiura, A. Nakayama, S. Sakatani, Y. Kohara, K. Uenishi and K. F. Kobayashi, “Mechanical Strength and Microstructure of BGA Joints Using Lead-Free Solders”, Materials Transactions, vol. 43, No. 8, 2002, pp. 1802-1807.
洪敏雄、游善溥,”電子構裝用無鉛焊錫”,科儀新知第二十卷二期, 民國87年,57-66頁。
F. Lang, H. Tanaka, O. Munegata, T. Taguchi and T. Narita, “The Effect of Strain Rate and Temperature on the Tensile Properties of Sn–3.5Ag Solder”, Materials Characterization, vol. 54, Issue 3, March 2005, pp. 223-229.
C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, “Improvements of Microstructure, Wettability, Tensile and Creep Strength of Eutectic Sn-Ag Alloy by Doping with Rare-Earth Elements”, Journal of Materials Research, vol. 17, No. 12, 2002, pp. 3146-3154.
D. G. Ivey, “Microstructural Characterization of Au/Sn Solder for Packaging in Optoelectronic Applications”, Micron, vol. 29, Issue 4, 1998, pp. 281-287.
W. Sun and D. G. Ivey, “Development of an Electroplating Solution for Code Positing Au-Sn Alloys”, Materials Science and Engineering B - Solid State Materials for Advanced Technology, vol. 65, No. 2, 1999, pp. 111-122.
P. L. Liu and J. K. Shang, “Interfacial Segregation of Bismuth in Copper/Tin-Bismuth Solder Interconnect”, Scripta Materialia, vol. 44, No.7, 2001, pp. 1019-1023.
H. W. Miao and J. G. Duh, “Microstructure Evolution in Sn-Bi and Sn-Bi-Cu Solder Joints Under Thermal Aging”, Journal of Material Chemistry and Physics, vol. 71, No. C. B. Lee, S. B. Jung, Y. E. Shin and C. C. Shur, “The Effect of Bi Concentration on Wettability of Cu Substrate by Sn-Bi Solders”, Materials Transactions, vol. 42, No. 5, 2001, pp. 751-755.
S. H. Huh, K. S. Kim and K. Suganuma, “Effect of Ag Addition on the Microstructural and Mechanical Properties of Sn-Cu Eutectic Solder”, Materials Transactions, Vol. 42, No. 5, 2001, pp. 739-744.
N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino and I. Yonezu, “Study on the Anode Behavior of Sn and Sn-Cu Alloy Thin-Film Electrodes”, Journal of Power Sources, Vol. 107, No. 1, 2002, pp. 48-55.
J. W. Morris, J. L. Freer Goldstein and Z. Mei, “Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders”, Jurnal of the Minerals Metals and Materials Society, July 1993, pp. 25-27.
United States Patent, No. 6179935 B1, 30 January, 2001.
United States Patent, No. 6241942 B1, 5 June, 2001.
K. Suganuma and K. S. Kim, “Sn–Zn Low Temperature Solder”, Journal of Materials Science: Materials in K. L. Lin and C. L. Shih, “Wetting Interaction Between Sn-Zn-Ag Solders and Cu”, Journal of Electronic Materials, Vol. 32, No. 2, 2003, pp. 95-100.
T. Takemoto, T. Funaki and A. Matsunawa, “Electrochemical Investigation on the Effect of Silver Addition on Wettability of Sn-Zn System Lead-free Solder”, Quarterly Journal of the Japan Welding Society, Vol. 17, No. 2, 1999, pp. 251-258.
M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties”, Applied Physics Letters, Vol. 63, Issue 1, July 1993, pp. 15-17.
K. I. Chen, S. C. Cheng, S. Wu and K. L. Lin, “Effects of Small Additions of Ag, Al, and Ga on the Structure and Properties of the Sn–9Zn Eutectic Alloy”, Journal of Alloys and Compounds, Vol. 416, Issues 1-2, 8 June 2006, pp. 98-105.
Y. L. Tsai, W. S. Hwang and H. S. Wang,” Measurement of Thermal Expansion Coefficients and Melting Range for Sn-9Zn-xAg Lead-free Solder Alloys”, Journal of Materials Science and Engineering, Vol. 34, no. 3, 2002, pp. 135-143.
K. L. Lin, L. H. Wen and T. P. Liu, “Microstructures of the Sn - Zn - Al Solder Alloys”, Journal of Electronic Materials, Vol. 27, No. 3, 1998, pp. 97- 105.
K. L. Lin and H. M. Hsu, “Sn-Zn-Al Pb-free Solder - An Inherent Barrier Solder for Cu Contact”, Journal of Electronic Materials, Vol. 30, No. 9, 2001, pp. 1068-1072.
K. I. Chen, S. C. Cheng, S. Wu and K.L. Lin, “Effects of Small Additions of Ag, Al, and Ga on the Structure and Properties of the Sn–9Zn Eutectic Alloy”, Journal of Alloys and Compounds, Vol. 416, Issues 1-2, 8 June 2006, pp. 98-105.
United States Patent, No. 6361626 B1, 26 March, 2002.
M. Kitajima and T. Shono, “Development of Sn-Zn-Al Lead-Free Solder Alloys”, Journal of FUJITSU Science Technology, Vol. 41, No. 2, July 2005, pp. 225-235.
C. W. Hwang and K. L. Lin, “Microstructures and Mechanical Properties of Sn-8.55Zn-0.45Al-XAg Solders”, Journal of Materials Research, Vol. 18, No. 7, July 2003, pp. 1528-1534.
K. I. Chen and K. L. Lin, “The Microstructures and Mechanical Properties of the Sn-Zn-Ag-Al-Ga Solder Alloys - the Effect of Ga”, Journal of Electronic Materials, 2003, Vol. 32, No. 10, pp. 1111-1116.
N. S. Liu and K. L. Lin, “Microstructure and Mechanical Properties of Low Ga Content Sn-8.55Zn-0.5Ag-0.1Al-xGa Solders”, Scripts Materialia, March 2005, Vol. 52, No. 5, pp. 369-374.
K. I. Chen and K. L. Lin, “ Effects of Gallium on Wettability, Microstructures and Mechanical Properties of the Sn-Zn-Ag-Ga and Sn-Zn-Ag-Al-Ga Solder Alloys”, Electronic Materials and Packaging, 2002. Proceedings of the 4th International Symposium on, 4-6 December 2002, pp. 49-54.
S. C. Cheng and K. L. Lin, “The Thermal Property of Lead-Free Sn-8.55Zn-1Ag-X Al Solder Alloys and its Wetting Interaction with Cu”, Journal of Electronic Materials, Vol. 31, No. 19, September 2002, pp. 940-945.
C. M. Chuang, H. T. Hung, P. C. Liu, and K. L. Lin, “The Interfacial Reaction Between Sn-Zn-Ag-Ga-Al Solders and Metallized Cu Substrate”, Journal of Electronic Materials, Vol. 33, No. 1, January 2004, pp. 7-13.
ASM Handbook, Vol. 3, Alloy Phase Diagrams, pp. 25-383.
M. J. Voss and H. L. Tsai, “Effects of the Rate of Latent Heat Release on Fluid Flow and Solidification Patterns During Alloy Solidification”, International Journal of Engineering Science, Vol. 34, No. 6, 1996, pp. 715-737.
M. C. Flemings, “Solidification Processing”, McGraw-Hill International Editions, 1974.
S. Argyropoulos, B. Closset, J. E. Gruzleski and H. Oger, “The Quantitative Control of Modification in Al-Si Foundry Alloys Using a Thermal Analysis Technique”, AFS Transactions, 1983, pp. 351-358.
D. M. Stefanescu, G. Upadhya and D. Bandyopadhyay, “Heat Transfer Solidification Kinetics Modeling of Solidification of Castings”, Metallurgical Transactions A, Vol. 21A, 1990, pp. 997-1005.
I. G. Chen and D. M. Stefanescu, “Computer-Aided Differential Thermal Analysis of Spheroidal and Compacted Graphite Cast Irons”, AFS Transactions, 1984, pp. 947-965.
K. G. Upadhya, D. M. Stefanescu, K. Lieu and D. P. Yeager, “Computer-Aided Cooling Curve Analysis:Principles and Applications in Metal Casting”, AFS Transactions, 1989, pp. 61-66.
J. O. Barlow and D. M. Stefanescu, “Computer-Aided Cooling Curve Analysis Revisited”, AFS Transactions, 1997, pp. 349-354.
C. H. Su and H. L. Tsai, “A Direct Method to Include Latent Heat Effect for Modeling Casting Solidification”, AFS Transactions, 1991, pp. 781-789.
J. H. Chen and H. L. Tsai, “Comparison on Different Models of Latent Heat Release for Modeling Casting Solidification”, AFS Transactions, 1990, pp. 539-546.
S. H. Jong, and W. S. Hwang, “Study of Functional Relationship of Fraction of Solid with Temperature in Mushy Range for A356 Al Alloy”, AFS Transactions, 1992, pp. 939-946.
Y. F. Chen, S. H. Jong, and W. S. Hwang, “Effects of Cooling Rate on Latent Heat Released Mode of near Pure Aluminum and Aluminum-Silicon Alloys”, Materials Science and Technology, Vol. 12, 1996, pp. 539-544.
J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, 3rd Edition, Phlogiston Press, Cambridge, 2002, pp. 21-25.
Mark F. Fleszar, “Lead-Tin Solder Characterization by Differential Scanning Calorimetry”, Thermochimica Acta, Vol. 367-368, 8 March 2001, pp. 273-277.
J. D. Cox, D. D. Wagman and V. A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, USA, 1989.
蔡映麟,博士論文,國立成功大學材料科學及工程學系,2002,55頁
J. R. Lloyd, Z. Chao and H. L. Tan, ”Measurements of Thermal Conductivity and Specific Heat of Lead Free Solder”, IEEE/CPMT International Electronics Manufacturing Technology Symposium, Austin, Institute of Electrical and Electronics Engineers, 1995, pp. 252-262.
http://www.engineeringtoolbox.com/
Vernon John, Introduction to Engineering Materials, PALGRAVE MACMILLAN PRESS LTD., London, U.K., 1992
http://www.webelements.com/
Arthur Beiser, Physics, Benjamin/Cummings Publishing Corp., GA, USA, 1977.