| 研究生: |
曾繼興 Tseng, Chi-Hsing |
|---|---|
| 論文名稱: |
使用空載光達與衛星影像分析植生覆蓋與蝕溝發育關聯性 Analysis of Different Vegetation toward the Development of Gully with Aerial LiDAR and Satellite Image |
| 指導教授: |
余騰鐸
Yu, Teng-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 光達 、衛星影像 、物件式分類 、蝕溝 |
| 外文關鍵詞: | LiDAR, Satellite Imagery, Object-Based Image Classification, Gully |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地勢陡峭,降雨多集中於夏秋兩季,造成山區邊坡大面積崩塌頻繁。除去降雨與風蝕等氣候因子,水土流失亦與地形、地質等因子有關,地表逕流侵蝕出的蝕溝對於淘刷土砂,在特定情況下可達總土壤流失的70%,這對於集水區水土保持以及水庫淤積而言,無疑是一項重要課題。本研究區域位於曾文水庫集水區北邊,主要岩性為砂、頁岩互層,使得侵蝕現象更發達,研究目的在於結合光達資料與衛星影像,觀察蝕溝發育與植生覆蓋的相對情況與相互影響關聯。
由於3米解析度的CHM與林分面積的相關性較好,本研究使用1米解析度DEM計算水系推估,半自動化尋找蝕溝位置;在計算CHM時才以3米解析度DEM與DSM來進行。隨後將經幾何校正後的影像計算出NDVI當作一個圖層,同時搭配SWIR、NIR波段與CHM,以物件式分類法分類出崩塌地/裸露地、陰影、針葉林、灌木叢、混合林、竹林以及農作地等類別。
結果顯示分類精度最好時Kappa值可達0.75,本研究水系推估模型經現場驗證後,模擬蝕溝位置的成功率為83.3%,此外,人為整治之工程點位亦會呈現在水系推估結果中,意即推估方式可有效辨識地表逕流匯流路線,並可於現場確認該施工點是否有效運作,以降低崩塌復發。透過相減兩期DEM可量化蝕溝的發育情形,並以像元尺度觀察,發現整體向下侵蝕情況普遍為0.2至0.25米,堆積則多在1米以上且偶有5、6米的極值,推測後者主要為樹木傾倒。雖然台灣山區林相複雜,仍可看出趨勢:在本區以混合林分布的區塊侵蝕情形明顯較少;竹林與灌木則是侵蝕較堆積面積高出許多,表示兩者皆屬於無法保持水土的植生類型,尤其竹林分布區域在相同外在因素影響下其侵蝕情況較為嚴重。
Soil erosion by water is an important physical process that may lead to land degradation. Gully is one of the main ways for slopes to loss soil besides landslide, weathering or erosion. This study intend to use hydraulic connectivity and digital elevation models (DEMs) to detect the location of gullies, then calculate the development of gully by simple subtraction using LiDAR data gathered from different periods of time. On the other hand, distinguishing the types of land-use via methods of Object-Based Image Classification with two periods of satellite images. Finally discuss the relationship between several possible causing factors: different vegetation, slope degree and precipitation toward the development of gully.
The result shows that, the hydraulic connectivity model using in this study has an accuracy about 83.3% for searching the gully successfully and has been verified by field survey. Not only the nature gully, remediation project such as river training works will also be shown in the result. Which proves the model can identify the confluence of runoff effectively. Observe the development of gully in pixel level, general erosion height is about 0.2-0.25 meters and the general height of deposition is about 1 meter during a year. Though the forest in the study area is quite complicated, there is still some tendency could be found. Seldom erosion occurred in mixed forest region; the situation of erosion and deposition is the same in the coniferous region. While bamboo and bush covered region have a massive area of erosion and rare deposition, showing that both of them aren’t a good land cover plantation for soil and water conservation, especially the bamboo.
Alonzo, M., Bookhagen, B., Roberts, D.A. (2014),Urban tree species mapping using hyperspectral and LiDAR data fusion, ELSEVIER Journal of Remote Sensing of Environment vol.148 p.70-83
Baltsavias, E.P. (1999),Airborne laser scanning: basic relations and formulas, ISPRS Journal of Photogrammetry & Remote Sensing vol.54 p.199-214
Braga, E.G.R., and Da Silva, M.R.L.F. (1991),Monitoring the green areas around Tucurui (Brazil) using 'Tasseled Cap' transformation, International Symposium on Remote Sensing of Environment vol.24 p.255-263
Ceccatoa, P., Flasse, S., Tarantola, S., Jacquemoud, S., Gre´goire, J.M. (2001),Detecting vegetation leaf water content using reflectance in the optical domain, ELSEVIER Journal of Remote Sensing of Environment vol.77 p.22-33
Clark, R.N., Roush, T.L. (1984),Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications, Journal of Geophysical Research vol.89 p.6329-6340
Congalton, R.G. and Mead, R.A. (1983),A quantitative method to test for consistency and correctness in photointerpretation, Photogrammetric Engineering & Remote Sensing vol.49(1) p.69-74.
Hsiao, K.H. Liu, J.K., Lau, C.C. (2004),Automation of Landslide Detection using Optical Images and Lidar data
Liu, T., Yang, X.J. (2013),Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis, ELSEVIER Journal of Remote Sensing of Environment vol.133 p.251-264
Mallet, C. and Bretar, F. (2009),Full-waveform topographic lidar: State-of-the-art, ISPRS Journal of Photogrammetry and Remote Sensing vol.64 p.1-16
Nearing, M.A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., Bissonnais,Y.L., Nichols, M.H., Nunes, J.P., Renschler, C.S., Souche`re, V., Oost, K.V. (2005),Modeling response of soil erosion and runoff to changes in precipitation and cover, Catena 61, p.131-154
Perroy, R.L., Bookhage, B., Asne, G.P., Chadwick, O.A. (2010),Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California
Rahman, M.R., and Saha, S.K. (2007),Multi-resolution Segmentation for Object-based Classification and Accuracy Assessment of Land Use/Land Cover Classification using Remotely Sensed Data
Razak, K.A., Straatsma, M.W., van Westen, C.J., Malet, J.P., de Jong, S.M. (2011),Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization, ELSEVIER Journal of Geomorphology vol.126 p.186-200
St-Onge, B.A., and Achaichia, N. (2001),Measuring Forest Canopy Height using a Combination of LiDAR and Aerial Photography Data
Swain, P.H., and Davis, S.M. (1978) Remote Sensing: The Quantitative Approach, ISBN 9780070625761
Tamás, L. (2010),Data acquisition and integration, Laser Scanning Ch4.2 Airborne laser scanning,http://www.tankonyvtar.hu/en/tartalom/tamop425/0027_DAI4/ch01.html
Torri, D., Borselli, L., Gariano, S.L., Greco, R., Iaquinta, P., Iovine, G., Poesen, J., Terranova O.G. (2012),Identifying gullies in the Mediterranean environment by coupling a complex threshold model and a GIS
Vosselman, G. and Maas, H.G. (2001),Adjustment and filtering of raw laser altimetry data
Wehr, A. and Lohr, U. (1999),Airborne laser scanning—an introduction and overview, ISPRS Journal of Photogrammetry & Remote Sensing vol.54 p.68-82
水利署,(2015),http://www.wra.gov.tw/fp.asp?xItem=63105&ctNode=2476
內政部,(2012),101年度發展高光譜與光達技術結合之應用工作案工作總報告,http://astdr.colife.org.tw/one_project.aspx?pid=172
史天元、何心瑜,(2005),數值高程模型及數值覆蓋模型產製品質研究,內政部LiDAR測區之高精度及高解析度數值地形測繪、資料庫建置與應用推廣工作案,第129-142頁
向哲弘,(2015),以機載高光譜影像辨識淺根性植物與地形變異關聯分析,國立成功大學資源工程所碩士論文
吳志遠,(2008),利用LiDAR探討物件式分類法對第一生產力資源參數萃取之研究,國立成功大學資源工程所碩士論文
李崇誠、邱珮榕、王驥魁,(2014),比較各種空載光達儀器與飛航參數對於森林穿透率影響,航測及遙測學刊第19卷,第1期,第63-73頁
南區水資源局,曾文水庫環境教育系列教材1B,http://swreeis.wrasb.gov.tw
洪宇佳、王正楷、曾義星、朱宏杰,(2014),全波形空載光達資料之波形特徵分析與分類,航測及遙測學刊第19卷,第2期,第125-145頁
徐偉城,(2007),「LiDAR與環境調查/監測/災害防救運用」,國土資訊系統通訊期刊,第61期,第69-79頁
彭炳勳,(2007),應用空載光達資料推測林木樹高與葉面積指數,屏東科技大學森林所碩士論文
黃韋凱、林銘郎、陳良健、林彥享、蕭震洋,(2010),物件導向分析方法應用於遙測影像之分區及崩塌地與人工設施分類,航測及遙測學刊第15卷,第1期,第29-49頁
黃冠理,(2010),以空載光達資料推估森林生物量與碳儲存量,屏東科技大學森林所碩士論文
楊啟見、林俊全、鄭遠昌,(2015),應用地面光達於風化泥岩層充實觀察之研究,中華水土保持學報第46卷,第3期,第150-157頁
鄭詠心,(2009),利用LiDAR對第一生產力資源參數與林相自動辨識差異分析,國立成功大學資源工程所碩士論文
顏宏宇,(2005),LiDAR直接量測數值地形資料精度分析與應用,國立成功大學地球科學所碩士論文
校內:2020-09-01公開