| 研究生: |
翁子勛 Wong, Zih-syun |
|---|---|
| 論文名稱: |
添加不同碳化鎢粒子強化鎳基熱熔射合金塗層之磨耗、氧化及腐蝕性質研究 Wear, oxidation and corrosion properties of thermal sprayed Ni-based alloy coatings reinforced with various WC particles |
| 指導教授: |
蘇演良
Su, Yan-liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 碳化鎢 、鎳基合金 、熱熔射塗層 |
| 外文關鍵詞: | Ni-based alloy, WC, Thermal spray coating |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用火焰熔射/重熔(Flame spray/fusion)製程技術,於低碳鋼底材上披覆Ni-WC熔射塗層。主要目的為探討添加WC對Ni基合金塗層之機械性質、磨潤性質、抗氧化性能之影響,唯鹽水噴霧試驗是採用HVOF塗層(Ni-WC)。實驗主要分為二個部份:第一部份探討WC摻雜比例(0 ~ 60 %)對於鎳基合金塗層性能之影響;第二部份探討不同尺寸WC晶粒及WC類型對於鎳基合金塗層性能之影響。
由實驗結果得知,採用Flame spray/fusion製程技術製備Ni-WC熔射塗層隨著WC摻雜比例之提升,硬度、抗磨耗及抗氧化方面的表現皆隨之提升,其中以60% WC摻雜比例為最佳;WC摻雜類型則以wc2 類型的碳化鎢粉末於鎳基熔射合金塗層具有最高硬度值Hv0.2 1103及最佳抗磨耗及抗氧化性能表現。
此外,於HVOF製程所製備之塗層於鹽水噴霧試驗中發現,隨著WC摻雜比例之提升,塗層的抗腐蝕性能反而下降;經比較奈米結構WC與傳統結構WC相,由於奈米結構WC較均勻地散佈於鎳基熔射合金塗層,使得摻雜10 %奈米結構WC之鎳基熔射合金塗層具有最佳抗腐蝕性能。
The main purpose of this research was to study the effects of WC addition on mechanical and tribological properties and anti-oxidation of Ni-based alloy coatings. The Ni-WC coatings on the substrate of low carbon steel were prepared by flame spray/fusion technique. Only HVOF coatings (Ni-WC) were used to salt spray corrosion test.
The experiment was divided into two parts. In the first part, the effect of content (0-60 % of WC addition) on the properties of Ni-based alloy coatings was investigated. In the second part, the effect of WC grain size in micro-scale (conventional) and nano-scale, and WC type on the properties of Ni-based alloy coatings were investigated.
The results revealed that the hardness, wear resistance, and oxidation resistance of Ni-WC coatings by flame spray/fusion process were increased with increasing content of WC addition. The coatings with 60% WC addition showed the best properties. The Ni-based sprayed alloy coatings with addition with wc2 type WC powder had the highest hardness of HV0.2 1103, the best wear resistance, and oxidation resistance.
In addition, it was observed that the corrosion resistance of Ni-WC coatings by HVOF process were decreased with increasing content of WC addition at salt spray corrosion test. The Ni-based sprayed alloy coatings with 10% nano-structured WC addition showed the best corrosion resistance, it can be attribute to nano-structured WC was homogeneous dispersion of Ni-based alloy coatings by compared with nano-structured WC and conventional WC.
1. R. González, M. Cadenas, R. Fernández, J.L. Cortizo, E. Rodríguez, “Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser”, Wear 262 (2007) 301–307.
2. J.M. Miguel, J.M. Guilemany, S. Vizcaino, “Tribological study of NiCrBSi coating obtained by different processes”, Tribol. Int. 36 (2003) 181–187.
3. E. Fernández, M. Cadenas, R. González, C. Navas, R. Fernández, J. de Damborenea, “Wear behaviour of laser clad NiCrBSi coating”, Wear 259 (2005) 870–875.
4. J. Rodríguez, A. Martín, R. Fernández and J.E. Fernández, “An experimental study of the wear performance of NiCrBSi thermal spray coatings”, Wear 255 (2003) 950–955.
5. H. Kim, S. Hwang, C. Lee, P. Juvanon, “Assesment of wear performance of flame sprayed and fused Ni-based coatings”, Surf. Coat. Technol. 172 (2003) 262–269.
6. J.P. Tu, M.S. Liu, Z.Y. Mao, “Erosion resistance of Ni-WC self-fluxing alloy coating at high temperature”, Wear 209 (1997) 43–48.
7. I.I. Garbar, “Gradiation of oxidational wear of metals”, Tribol. Int. 35 (2002) 749–755.
8. 蕭威典, “熔射覆膜技術”,全華科技圖書股份有限公司,2006 年 7 月。
9. A.R. Nicoll, “Self-fluxing coatings for stationary gas turbines”, Thin Solid Films, 95 (1982) 285–295.
10. W.P. Clark, “'High tech' hardfacing alloys combat corrosion and abrasion of metal parts”, Welding J. 64 (1985) 69–71.
11. M. Rosso and A. Bennani, “Studies of new applications of Ni-based powders for hardfacing processes”, PM World Congress Thermal Spraying/Spray Forming, 1998, p. 524–530.
12. Y. Matsubara, M. Kumagawa, Y. Sochi and A. Notomi, “Application of self-fused alloy coating by HF induction heating”, Thermal Spraying--Current Status and Future Trends, Vol. 1, 1995, Kobe, Japan, p. 1001–1004.
13. N. Takasaki, A. Tomiguchi, Y. Sochi and A. Ohmori, “Fusing of Sprayed Nickel-Base Coatings by Induction Heating”, Thermal Spray: International Advances in Coatings Technology, Orlando, Florida, USA, 1992, p. 273–278.
14. A. Tomiguchi, Y. Sochi and Y. Matsubara, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, 1061–1065.
15. Ding Chuanxian, Huang Bingtang, Lin Huiling , “Plasma-sprayed wear- resistance ceramic and cermet coating materials”, Thin Solid Films 118 (1984) 485–493.
16. H.L. de Villiers Lovelock, P.W. Richter, J.M. Benson and P.M. Young, “Parameter study of HP/HVOF deposited WC–Co coatings”, J. Thermal Spray Technol. 7 (1998) 97–107.
17. A.K. Akasawat, “Wear properties of WC–Co coatings with plasma and high velocity oxy fuel spraying”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, 281–286.
18. H.M. Hawthorne, B. Arsenault, J.P. Immarigeon, J.G. Legoux and V.R. Parameswaran, “Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings”, Wear 225 (1999) 825–834.
19. A. Karimi, C. Verdon, J.L. Martin and R.K. Schmid, “Slurry erosion behaviour of thermally sprayed WC–M coatings”, Wear 186–187 (1995) 480–486.
20. 蕭威典, “陶瓷/金屬材料噴塗技術之發展與應用”,工業材料雜誌,2004 年 4 月,164–169。
21. 呂明生、蕭威典、劉茂賢, “熱熔射塗層技術在工業界之應用”,工業材料雜誌,2008 年 1 月,151–158。
22. 蕭威典、劉武漢, “熔射塗層性質與結構簡介”,工業材料雜誌,2006 年 1 月,167–175。
23. André McDonald, Christian Moreau, Sanjeev Chandra, “Thermal contact resistance between plasma-sprayed particles and flat surfaces”, International Journal of Heat and Mass Transfer 50 (2007) 1737-1749.
24. M. Pasandideh-Fard, V. Pershin, S. Chandra, J. Mostaghimi, “Splat shapes in a thermal spray coating process: simulations and experiments”, J. Therm. Spray Technol. 11 (2002) 206–217.
25. M. Fukumoto, E. Nishioka, T. Matsubara, “Flattening and solidification behavior of a metal droplet on a flat substrate surface held at various temperatures”, Surf. Coat. Technol. 120–121 (1999) 131–137.
26. S. Costil, H. Liao, A. Gammoudi, C. Coddet, “Influence of surface laser cleaning combined with substrate preheating on the splat morphology”, J. Therm. Spray Technol. 14 (2005) 31–38.
27. A. McDonald, M. Lamontagne, C. Moreau, S. Chandra, “Visualization of impact of plasma-sprayed molybdenum particles on hot and cold glass substrates, in: E. Lugscheider (Ed.)”, International Thermal Spray Conference, ASM International, Materials Park, OH, 2005, p. 1192-1197.
28. 劉茂賢, “熔射製程與即時監控技術之原理與應用簡介”,工業材料雜誌,2005年2 月,123–131。
29. Ken Brookes, “Thermal sprays are the stars at ‘Winterev 06’”, Metal Powder Report 61 (2006) 42–49.
30. 蕭威典、劉武漢, “電漿熔射技術簡介”,工業材料雜誌,2005 年 12 月,158–165。
31. 蕭威典、劉武漢, “電漿熔射熱障塗層在高溫防護上之應用”,工業材料雜誌,2006 年 5 月,171–178。
32. 李文亞、李長久,“冷噴塗特性”,中國表面工程,2002,12–16。
33. 吳中仁、劉武漢、蕭威典、楊寧、劉茂賢、黃金德,“超音速熔射技術簡介及其應用”,工業材料雜誌,2005年2 月,117–122。
34. Qian Ming, L.C. Lim, Z.D. Chen, ”Laser cladding of nickel-based hardfacing alloys”, Surf. Coat. Technol. 106 (1998) 174–182.
35. A. Conde, F. Zubiri, J. Damborenea, “Cladding of Ni–Cr–B–Si coatings with a high power diode laser”, Mater. Sci. Eng. A 334 (1–2) (2002) 233–238.
36. F. Otsubo, H. Era and K. Kishitake, “Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron”, J. Therm. Spray Technol. 9 (1) (2000) 107–113.
37. S. Lebaili and S. Hamar-thibault, “Equilibres liquide-solide dans le systeme Ni-B-Si dans la region riche en nickel”, Acta Metall, French, 35 (1987) 701–710.
38. L.C. Betancourt-Dougherty, R.W. Smith, “Effects of load and sliding speed on the wear behaviour of plasma sprayed TiC---NiCrBSi coatings”, Wear 217 (1998) 147–154.
39. K. Sang, Y. Li, “Cavitation erosion of flame spray weld coating of nickel-base alloy powder”, Wear 189 (1995) 20–24.
40. M.C. Lin, L.S. Chang, H.C. Lin, C.H. Yang and K.M. Lin, “A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating”, Surf. Coat. Technol. 201 (2006) 3193–3198.
41. L.N. Moskowitz and E. Klar, Conference on Modern Developments in Powder Metallurgy, Washington, USA, Vol. 14, 1980, 435–454.
42. Z. Ding, R. Knight and R.W. Smith, “Abrasion Wear Characteristics of Ni-Base Self-Fluxing Alloy Spray Welding Over-Layers”, Proceeding of the 1st United Thermal Spray Conference, Materials Park, Ohio, USA, 1997, 91–95.
43. O. Knotek, E. Lugschneider and H. Reimann, “Structure of Ni-rich Ni–Cr–B–Si coating alloys”, J. Vac, Sci. Technol. 12 (1975) 770–772.
44. H.J. Kim and Y.J. Kim, “Microstructural evaluations of the plasma transferred arc coated layers on the hardness wear resistance and corrosion for the hardfacing of Ni-and Co-based alloys”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, 1998, 217–224.
45. O. Knotek and E. Lugschneider, “On the structure of Ni–Cr–B–Si hardfacing alloys and their bonding reactions”, J. Vac. Sci. Technol. 11 (1974) 789–801.
46. S. Lebaili, M. Durand-Charee and S. Hamar-Thibault, “The metallurgical structure of as-solidified Ni-Cr-B-Si-C hardfacing alloys”, J. Mater. Sci. Eng. 23 (1988) 3603–3611.
47. Y.H. Shieh, J.T. Wang, H.C. Shih and S.T. Wu, “Alloying and post-heat-treatment of thermal-sprayed coatings of self-fluxing alloys”, Surf. Coat. Technol. 58 (1993) 73–77.
48. Q. Li, D. Zhang, T. Lei, C. Chen and W. Chen, “Comparison of laser-clad and furnace-melted Ni-based alloy microstructures”, Surf. Coat. Technol. 137 (2001) 122–135.
49. R. L. Sun, D. Z. Yang, L. X. Guo, S. L. Dong, “Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate”, Surf. Coat. Technol. 132 (2000) 251–255.
50. Junhu Meng, Jinjun Lu, Jingbo Wang, Shengrong Yang, “The interfacial and tribological properties of Ni–Cr alloy/ceramic tribo-couples under dry sliding contact”, Journal of the European Ceramic Society 26 (2006) 2407–2412.
51. Miyoshi, K., “Adhesion, friction, and wear behavior of clean metal/ceramic couples”, In Proceedings of the International Tribology Conference, 1995, p. 1853–1858.
52. G. W. Stachowiak, G. B. Stachowiak, A. W. Batchelor, “Metallic film transfer during metal-ceramic unlubricated sliding”, Wear 132 (1989) 361–381.
53. M.P. Planche, H. Liao, B. Normand and C. Coddet, “Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes”, Surf. Coat. Technol. 200 (2005) 2465–2473.
54. W.M. Zhao, Y. Wang, T. Han, K.Y. Wu and J. Xuea, “Electrochemical evaluation of corrosion resistance of NiCrBSi coatings deposited by HVOF”, Surf. Coat. Technol. 183 (2004) 118–125.
55. S.F. Wayne, J.G. Baldoni and S.T. Buljan, “Abrasion and erosion of WC–Co with controlled microstructure”, Tribol. Trans. 33 (1990) 611–617.
56. M. Masuda, Y. Kuroshima and Y. Chujo, “Failure of tungsten carbide-cobalt alloy tools in machining of carbon materials”, Wear 169 (1993) 135–140.
57. S. Usmani, S. Sampath, D.L. Huock and D. Lee, “Effect of carbide grain size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings”, Tribol. Trans. 40 (1997) 470–478.
58. K.H. Zum Gahr, “Microstructure and Wear of Materials”, Elsevier Science Publishers BV, Amsterdam, 1987.
59. J. Mateos, J.M. Cuetos, E. Fernandez and R. Vijande, “Tribological behaviour of plasma-sprayed WC coatings with and without laser remelting ”, Wear 239 (2000) 274–281.
60. K. Jia and T.E. Fischer, “Sliding wear of conventional and nanostructured cemented carbides”, Wear 203–204 (1997) 310–318.
61. V. Fervel, B. Normand, H. Liao, C. Coddet, E. Bêche and R. Berjoan, “Friction and wear mechanisms of thermally sprayed ceramic and cermet coatings”, Surf. Coat. Technol. 111 (1999) 255–262.
62. Y. Wang and P. Kettunen, “The optimization of spraying parameters for WC–Co coatings by plasma and detonation-gun spraying”, Thermal Spray International Advances in Coatings Technology, ASM International, Metals Park, OH, 1992, 575–580.
63. B. H. Kear, G. Skandan, R. K. Sadangi, “Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings”, Scripta Mater. 44 (2001) 1703–1707.
64. Ganesh Skandan, Ruvee Yao, Bernard H. Kear, Yunfei Qiao, Lucy Liu, Traugott E. Fischer, “Multimodal powders: a new class of feedstock material for thermal spraying of hard coatings”, Scripta Mater. 44 (2001) 1699–1702.
65. B. Schultrich, L.M. Berger, J. Menker and A. Oswald, “Influence of carbide powder composition on decarburization during air plasma spraying”, Proceedings of the 2nd Plasma-Technik Symposium, Lucerne, Switzerland, 1991, 363–371.
66. J. Nerz, B. Kushner and A. Rotolico, “Microstructural evaluation of tungsten carbide–cobalt coatings”, J. Therm. Spray Technol. 1 (2) (1992) 147–152.
67. M.F. Morks, Yang Gao, N.F. Fahim, F.U. Yingqing, M.A. Shoeib, “Influence of binder materials on the properties of low power plasma sprayed cermet coatings”, Surf. Coat. Technol. 199 (2005) 66–71.
68. M.S.A. Khan, T.W. Clyne and A.J. Sturgeon, “Microstructure and abrasion resistance of WC–Co coatings produced by high velocity oxy-fuel spraying”, Thermal Spray: A United Forum for Scientific and Technological Advances ASM International, Metals Park, OH, 1997, 681–690.
69. Y.M. Yang, H. Liao and C. Coddet, “New performance for HVOF thermal spraying systems with the use of natural gas”, Proceedings of 14th International Spray Conference, Osaka, Japan High Temperature Society of Japan, 1995, 307–312.
70. Sh. Khameneh Asl, M. Heydarzadeh Sohi, K. Hokamoto and M. Uemura, “Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings”, Wear 260 (2006) 1203–1208.
71. H.J. Kim, Y.G. Kweon, R.W. Chang, “Wear and erosion behavior of plasma-sprayed WC-Co coatings”, J. Thermal Spray Technol. 3 (2) (1994) 169–178.
72. M.E. Vinayo, F. Kassabji, J. Guyonne and P. Fauchais, “Plasma sprayed WC–Co coatings”, J. Vac. Sci. Technol. A3 (6) (1985) 2483–2489.
73. C. Verdon, A. Karimi and J.L. Martin, “A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures”, Mater. Sci. Eng. A 246 (1998) 11–24.
74. H.L. de Villiers Lovelock, P.W. Richter, J.M. Benson, P.M. Young, “Powder/processing/structure relationships in WC-Co thermal spray coatings: A review of the published literature”, J. Therm. Spray Technol. 7 (1998) 357–373.
75. C.J. Li, A. Ohmori, Y. Harada, “Formation of an amorphous phase in thermally sprayed WC-Co”, J. Therm. Spray Tech. 5 (1) (1996) 69–73.
76. M. Gell, “Applying nanostructured materials to future gas turbine engines”, JOM 46 (1994) 30–34.
77. K. Jia, T. E. Fischer and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites”, Nanostruct. Mater. 10 (1998) 875–891.
78. S.I. Cha, S.H. Hong, G.H. Ha and B.K. Kim, “Microstructure and mechanical properties of nanocrystalline WC-10Co cemented carbides”, Scripta Mater. 44 (2001) 1535–1539.
79. K. Jia and T.E. Fischer, “Abrasion resistance of nanostructured and conventional cemented carbides”, Wear 200 (1996) 206–214.
80. B.H. Kear and L.E. McCandlish, “Chemical processing and properties of nanostructured WC–Co materials”, Nanostruct. Mater. 3 (1993) 19–30.
81. L.E. McCandlish, B.H. Kear, B.K. Kim and L.W. Wu, “Low pressure plasma-sprayed coatings of nanophase WC–Co”, in: R.M. Yazici. (Ed.), Protective Coatings: Processing and Characterization, The Minerals, Metals and Materials Society, Warrendale, PA, 1990, 113–119.
82. J.H. He and J.M. Schoenung, “A review on nanostructured WC–Co coatings”, Surf. Coat. Technol. 157 (2002) 72–79.
83. Y.R. Liu, Y.F. Qiao, J.H. He, E.J. Lavernia, T.E. Fischer, “Near-nanostructured WC–18 pct Co coatings with low amounts of non-WC carbide phase: Part II, Hardness and resistance to sliding and abrasive wear”, Metall. Mater. Trans. A 33 (2002) 159–164.
84. J.H. He, M. Ice, S. Dallek, E.J. Lavernia, “Synthesis of nanostructured WC–12 pct Co coating using mechanical milling and high velocity oxygen fuel thermal spraying”, Metall. Mater. Trans. A 31 (2000) 541–553.
85. D.A. Stewart, P.H. Shipway, D.G. McCartney, “Microstructural evolution in thermally sprayed WC–Co coatings: comparison between nanocomposite and conventional starting powders”, Acta Mater. 48 (2000) 1593–1604.
86. A.H. Dent, S. DePalo, S. Sampath, “Examination of the wear properties of HVOF sprayed nanostructured and conventional WC–Co cermets with different binder phase contents”, J. Therm. Spray Tech. 11 (2002) 551–558.
87. D.A. Stewart, P.H. Shipway and D.G. McCartney, “Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC–Co coatings”, Wear 225–229 (1999) 789–798.
88. H. Chen, C. Xu, Q. Zhou, I.M. Hutchings, P.H. Shipway and J. Liu, “Micro-scale abrasive wear behaviour of HVOF sprayed and laser-remelted conventional and nanostructured WC–Co coatings”, Wear 258 (2005) 333–338.
89. P.H. Shipway, D.G. McCartney and T. Sudaprasert, “Sliding wear behaviour of conventional and nanostructured HVOF sprayed WC–Co coatings”, Wear 259 (2005) 820–827.
90. Jin-hong Kim, Hyun-seok Yang, Kyeong-ho Baik, Byeung Geun Seong, Chang-hee Lee, Soon Young Hwang, “Development and properties of nanostructured thermal spray coatings”, Current Applied Physics 6 (2006) 1002–1006.
91. Hyung-Jun Kim, Chang-Hee Lee, Soon-Young Hwang, “Superhard nano WC–12%Co coating by cold spray deposition”, Mater. Sci. Eng. A 391 (2005) 243–248.
92. L. Jacobs, M. Hyland, M. De Bonte, “Wear behaviour of HVOF and HVAF sprayed WC-cermet coatings”, Proceedings of the 15th International Thermal Spray Conference, Nice, France, May 25–29, 1998, p. 169–174.
93. Ying-chun Zhu, Ken Yukimura, Chuan-xian Ding, Ping-yu Zhang, “Tribological properties of nanostructured and conventional WC–Co coatings deposited by plasma spraying”, Thin Solid Films 388 (2001) 277–282.
94. S. Lay, J.-L. Chermant, J. Vicens, “Plasticity of WC materials by T. E. M. investigations”, Mater. Sci. Res. 18 (1984) 87–96.
95. Priit Kulu, Sergei Zimakov, “Wear resistance of thermal sprayed coatings on the base of recycled hardmetal”, Surf. Coat. Technol. 130 (2000) 46–51.
96. J. M. Guilemany, J. M. Miguel, S. Vizcaino, F. Climent, “Role of three-body abrasion wear in the sliding wear behaviour of WC–Co coatings obtained by thermal spraying”, Surf. Coat. Technol. 140 (2001) 141–146.
97. Jorn Larsen-Basse, “Binder extrusion in sliding wear of WC-Co alloys”, Wear 105 (1985) 247–256.
98. M.R. Dorfman, B.A. Kushner, J. Nerz and A.J. Rotolico, “A technical assessment of high velocity oxygen-fuel versus high energy plasma tungsten carbide–cobalt coatings for wear resistance”, Proceedings of the 12th International Thermal Spray Conference, London, 1989, 291–302.
99. K. Niemi, P. Vuoristo, T. Mantyla, G. Barbezat and A.R. Nicoll, “Abrasion wear resistance of carbide coatings deposited by plasma and high velocity combustion processes”, Thermal Spray: International Advances in Coating Technology, ASM Int., Materials Park, OH, USA, 1992, 685–689.
100. J. Nerz, B. Kushner and A. Rotolico, “Effects of deposition methods on the physical properties of tungsten carbide 12 wt.% cobalt thermal spray coatings”, Protective Coatings: Processing and Characterization, The Minerals, Metals and Materials Society, Warrendale, PA, 1990, 135–143.
101. R. Schwetzke and H. Kreye, “Microstructure and properties of tungsten carbide coatings sprayed with various HVOF spray systems”, Thermal Spray: Meeting the challenges of the 21st century, ASM Int., Materials Park, OH, USA, 1998, 187–192.
102. J. Wang, K. Li, D. Shu, X. He, B. Sun, Q. Guo, M. Nishio and H. Ogawa, “Effects of structure and processing technique on the properties of thermal spray WC–Co and NiCrAl WC–Co coatings”, Mater. Sci. Eng. A 371 (2004) 187–192.
103. H. Wang, W. Xia and Y. Jin. “A study on abrasive resistance of Ni-based coatings with a WC hard phase”, Wear 195 (1996) 47–52.
104. R. Franch, C. Lorenzana, J.M. Miguel and J.M. Guilemany, “Recubrimientos de Cermet/NiCrBSi resistences al desgaste obtenidos por proyección térmica de alta velocidad (HVOF), Soldadura y tecnologías de union”, Spanish, 67 (2001) 9–14.
105. I. Kvemes, E. Lugscheider and Y. Lindblom, Proc. The 2nd European Symposium on Engineering Ceramics, London, UK, Elsevier Applied Science, Amsterdam, 1987, 45–79.
106. G.R. Heath and P.A. Kamer, Surface Modification Technology IX, Cleveland, Ohio, USA, 1995, 109–113.
107. P. Heimgartner, I. Kretsner, R. Polak and P.A. Kammer, The 5th European Conference on Advanced Materials, Processes and Applications, Surface Engineering and Functional Materials, Mastricht, Netherlands, Vol. 3, 1997, 109–113.
108. A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, “The study of properties of Ni–W2C and Co–W2C powders thermal sprayed deposits”, Journal of Materials Processing Technology 164-165 (2005) 1068–1073.
109. J. Larsen-Basse, E.T. Koyanagi, “Abrasion of WC-Co alloys by quartz.”, Journal of Lubrication Technology, Transactions ASME 101 (1979) 208–211.
110. K. Sugiyama, S. Nakahama, S. Hattori, K. Nakano, “Slurry wear and cavitation erosion of thermal-sprayed cermets”, Wear 258 (2005) 768–775.
111. G.R. Bell, “Furnace Fused Spray Metal Coatings”, Proceedings of the Eighth International ThermalF Spraying Conference, Miami, Florida, USA, 1976, 396–406.
112. P. Wu, H. M. Du, X. L. Chen, Z. Q. Li, H. L. Bai, E. Y. Jiang, “Influence of WC particle behavior on the wear resistance properties of Ni–WC composite coatings”, Wear 257 (2004) 142–147.
113. J. E. Fernández, M.R. Fernández, R.V. Diaz and R.T. Navarro, “Abrasive wear analysis using factorial experiment design”, Wear 255 (2003) 38–43.
114. D.B. Lee, J.H. Ko, S.C. Kwon, “Oxidation of Ni–W coatings at 700 and 800 °C in air”, Surf. Coat. Technol. 193 (2005) 292–296.
115. R. Peraldi, D. Monceau, B. Pieraggi, “Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. II. Growth kinetics”, Oxidation of Metals 58 (2002) 275–295.
116. S.N. Basu, V.K. Sarin, “Oxidation behavior of WC-Co”, Mater. Sci. Eng. A 209 (1996) 206–212.
117. Q. Yang, T. Senda, A. Hirose, “Sliding wear behavior of WC–12% Co coatings at elevated temperatures”, Surf. Coat. Technol. 200 (2006) 4208–4212.
118. E.A. Gulbransen and W.S. Wysong, Technical Publication No. 2224, American Institute of Mining and Metallurgical Engineers. New York, NY, 1947.
119. Qiti Guo, Junwen Wang, Ole Jakob Kleppa, “Note on the enthalpies of formation, from the component oxides, of CoWO4 and NiWO4, determined by high-temperature direct synthesis calorimetry”, Thermochimica Acta 380 (2001) 1–4.
120. R.C. Pullar, S. Farrah, N. McN. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics”, Journal of the European Ceramic Society 27 (2007) 1059–1063.
121. C. Louro, A. Cavaleiro, “The role of nickel in the oxidation resistance of tungsten-based alloys”, Surf. Coat. Technol. 116–119 (1999) 121–127.
122. Ting You, Guangxiang Cao, Xinyu Song, Chunhua Fan, Wei Zhao, Zhilei Yin, Sixiu Sun, “Alcohol–thermal synthesis of flowerlike hollow cobalt tungstate nanostructures”, Materials Letters 62 (2008) 1169–1172.
123. Liang Zhen, Wen-Shou Wang, Cheng-Yan Xu, Wen-Zhu Shao, Lu-Chang Qin, “A facile hydrothermal route to the large-scale synthesis of CoWO4 nanorods”, Materials Letters 62 (2008) 1740–1742.
124. T.S. Sidhu, S. Prakash, R.D. Agrawal, “A comparative study of hot corrosion resistance of HVOF sprayed NiCrBSi and Stellite-6 coated Ni-based superalloy at 900 °C”, Mater. Sci. Eng. A 445–446 (2007) 210–218.
125. Buta Singh Sidhu, S. Prakash, “Studies on the behaviour of stellite-6 as plasma sprayed and laser remelted coatings in molten salt environment at 900 °C under cyclic conditions”, Journal of Materials Processing Technology 172 (2006) 52–63.
126. T.S. Sidhu, S. Prakash, R.D. Agrawal, “Hot corrosion studies of HVOF sprayed Cr3C2–NiCr and Ni–20Cr coatings on nickel-based superalloy at 900 °C”, Surf. Coat. Technol. 201 (2006) 792–800.
127. L. Castaldi, D. Kurapov, A. Reiter, V. Shklover, P. Schwaller, J. Patscheider, “High temperature phase changes and oxidation behavior of Cr–Si–N coatings”, Surf. Coat. Technol. 202 (2007) 781–785.
128. J. M. Guilemany, J. Fernández, J. Delgado, A. V. Benedetti, F. Climent, “Effects of thickness coating on the electrochemical behaviour of thermal spray Cr3C2–NiCr coatings”, Surf. Coat. Technol. 153 (2002) 107–113.
129. B.D. Sartwell, P.M. Natishan, I.L. Singer, K.O. Legg, J.D. Schell, J.P. Sauer, “Aerospace/Airline Plating and Metal Finishing Forum”, San Antonio TX, USA, March 24–26, 1998, American Electroplaters and Surface Finishers Society, Proceedings, 1998, p. 97.
130. Aw Poh Koon, Tan Boon Hee, M. Taylor,M.Weston, J. Yip, “Hard Chrome Replacement by HVOF Sprayed Coatings”, Technical Report PT/99/002/ST, Singapore Institute of Manufacturing Technology, 1999.
131. Marcelino P. Nascimento, Renato C. Souza, Ivancy M. Miguel, Walter L. Pigatin, Herman J. C. Voorwald, “Effects of tungsten carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high strength steel”, Surf. Coat. Technol. 138 (2001) 113–124.
132. H.J.C. Voorwald, R.C. Souza, W.L. Pigatin, M.O.H. Cioffi, “Evaluation of WC–17Co and WC–10Co–4Cr thermal spray coatings by HVOF on the fatigue and corrosion strength of AISI 4340 steel”, Surf. Coat. Technol. 190 (2005) 155–164.
133. A. Neville, T. Hodgkiess, “Corrosion behaviour and microstructure of two thermal spray coatings”, Surface Engineering 12 (1996) 303–312.
134. J. M. Perry, A. Neville, V. A. Wilson, T. Hodgkiess, “Assessment of the corrosion rates and mechanisms of a WC–Co–Cr HVOF coating in static and liquid–solid impingement saline environments”, Surf. Coat. Technol. 137 (2001) 43–51.
135. J.M. Perry, A. Neville, T. Hodgkiess, “A comparison of the corrosion behavior of WC-Co-Cr and WC-Co HVOF thermally sprayed coatings by in situ Atomic Force Microscopy (AFM)”, J. Therm. Spray Technol. 11 (2002) 536–541.
136. D. Toma, W. Brandl, G. Marginean, “Wear and corrosion behaviour of thermally sprayed cermet coatings”, Surf. Coat. Technol. 138 (2001) 149–158.
137. V.A.D. Souza, A. Neville, “Linking electrochemical corrosion behaviour and corrosion mechanisms of thermal spray cermet coatings (WC–CrNi and WC/CrC–CoCr)”, Mater. Sci. Eng. A 352 (2003) 202–211.
138. C. Monticelli, A. Frignani, F. Zucchi, “Investigation on the corrosion process of carbon steel coated by HVOF WC/Co cermets in neutral solution”, Corros. Sci. 46 (2004) 1225–1237.
139. J.M. Guilemany, S. Dosta, J. Nin, J.R. Miguel, “Study of the properties of WC-Co nanostructured coatings sprayed by high-velocity oxyfuel”, J. Therm. Spray Technol. 14 (2005) 405–413.
140. Xie Guozhi, Zhang Jingxian, Lu Yijun, Wang Keyu, Mo Xiangyin, Lin Pinghua, “Effect of laser remelting on corrosion behavior of plasma-sprayed Ni-coated WC coatings”, Mater. Sci. Eng. A 460–461 (2007) 351–356.
141. Guozhi Xie, Jinxian Zhang, Yijun Lu, Ziyi He, Bing Hu, Dongjie Zhang, Keyu Wang, Pinghua Lin, “Influence of laser treatment on the corrosion properties of plasma-sprayed Ni-coated WC coatings”, Applied Surface Science 253 (2007) 9198–9202.
142. J.E. Cho, S.Y. Hwang, K.Y. Kim, “Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment”, Surf. Coat. Technol. 200 (2006) 2653–2662.
143. T. Rogne, “The importance of corrosion on the erosion–corrosion performance of thermal spray ceramic–metallic coatings”, Proceeding of the 9th International Conference on Thermal Spray, Materials Park, Warrendale, USA, 1996, p. 207.
144. A. Neville, “An Assessment of Galvanic Effects in Thermal Sprayed Coating System”, A United Forum for Science and Technology Advances, ASM Inter, Warrendale, USA, 1997, p. 161.
145. E.J. Wentzel, C. Allen, “The erosion-corrosion resistance of tungsten-carbide hard metals”, International Journal of Refractory Metals and Hard Materials 15 (1997) 81–87.
146. A.M. Human, H.E. Exner, “The relationship between electrochemical behaviour and in-service corrosion of WC based cemented carbides”, International Journal of Refractory Metals and Hard Materials 15 (1997) 65–71.
147. Sutha Sutthiruangwong, Gregor Mori, “Corrosion properties of Co-based cemented carbides in acidic solutions”, International Journal of Refractory Metals and Hard Materials 21 (2003) 135–145.
148. A.M. Human and H.E. Exner, “Electrochemical behaviour of tungsten-carbide hardmetals”, Mater. Sci. Eng. A 209 (1996) 180–191.
149. A. M. Human, B. Roebuck, H. E. Exner, “Electrochemical polarisation and corrosion behaviour of cobalt and Co(W,C) alloys in 1 N sulphuric acid”, Mater. Sci. Eng. A 241 (1998) 202–210.
150. A. r. Trueman, D. P. Schweinsberg, G. a. Hope, “A study of the effect of cobalt additions on the corrosion of tungsten carbide carbon steel metal matrixcomposites”, Corros. Sci. 41 (1999) 1377–1389.
151. V.A.D. Souza, A. Neville, “Mechanisms and kinetics of WC-Co-Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments”, J. Thermal Spray Technol. 15 (2006) 106–117.
152. 吳佳穎, “奈米結構與傳統型碳化鎢/鈷粒子強化鎳基熱熔射合金塗層之磨潤性質研究”,國立成功大學機械工程研究所碩士論文,2007 年 6 月。