簡易檢索 / 詳目顯示

研究生: 周均珈
Chou, Chun-Chia
論文名稱: 以生長發育之觀點探討體型雌雄二型性的演化
Incorporating an ontogenetic perspective into evolutionary theory of sexual size dimorphism
指導教授: 仲澤剛史
Takefumi Nakazawa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 27
中文關鍵詞: 體型雌雄二型性SSD生長發育觀點數量遺傳模式
外文關鍵詞: sexual size dimorphism, SSD, ontogenetic growth, quantitative genetic model
相關次數: 點閱:114下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 體型雌雄二型性 (SSD) 是指兩性成熟體型差異的現象。解釋此現象演化的假說至今已提出:大體型的雌性具有較高的生殖力、以及大體型的雄性具有較高的生殖成功機會。除上述機制外,實證研究在近期指出,SSD的出現是由於兩性擁有不同的生長軌跡導致。然而截至今日,兩性生長軌跡的演化如何受到性別專一的擇汰壓力、與生活史權衡的調控尚未明瞭。本研究整合生長發育的觀點,解釋兩性的生長軌跡如何因應不同擇汰壓力產生分歧,進而導致體型雌雄二型性。我利用數量遺傳模式,分析雄性與雌性體型、及體型二型性的演化動態。我假設體型大小主要受個體生長速度與生長時間的調控。個體可藉加速生長、或延長生長時間增加體型,並分別有助於雌性生殖力與雄性生殖成功的機會。個體加速生長(延長生長時間)須付出的代價為提高死亡率(縮短繁殖時間)。模式說明兩性如何因應不同繁殖策略,最適化各自的生長軌跡與體型大小。本研究藉整合生長發育之觀點釐清SSD如何演化,並提出假說待後續實證研究測試。

    Sexual size dimorphism (SSD) describes divergent body sizes of adult males and females in a species. Several hypotheses (e.g., fecundity selection and sexual selection) have been proposed to explain evolution of SSD. Meanwhile, it has recently been acknowledged that SSD occurs because two sexes undergo different ontogenetic growth trajectories (i.e., growth rate and duration). However, it remains unclear how sex-specific ontogenetic growth trajectories evolve under sex-specific selection and life history trade-offs. To elucidate this, I develop a new theoretical framework by extending a quantitative genetic model for sexual trait dimorphism (i.e., male ornament) in which I reinterpret the trait as body size and redefine individual fitness in a size-dependent manner. Specifically, I assume that benefits of large body size are higher mating success for males and higher fecundity for females whereas accelerated growth rate and prolonged growth duration incur costs of lower survivorship and shorter reproduction period, respectively. Model analysis illustrated how two sexes would optimize ontogenetic growth trajectories under different trade-offs due to different reproductive strategies and divergent adult body sizes. The present framework incorporating an ontogenetic perspective provides a new insight into how SSD evolves, as well as testable hypotheses for empirical research.

    摘要 i Abstract ii 致謝 iii Table of contents iv List of table v List of figures vi Introduction 1 Models 2 Discussion 7 Literature cited 11 Figure legends 16 Appendices 21

    Abouheif, E. and D. J. Fairbairn. 1997. A comparative analysis of allometry for sexual size dimorphism: assessing Rensch's rule. Am. Nat. 149:540-562.
    Arendt, J. D. 1997. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72:149-177.
    Ayala, F. J. and C. A. Campbell. 1974. Frequency-dependent selection. Annu. Rev. Ecol. Syst. 5:115-138.
    Badyaev, A. V. 2002a. Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trend. Ecol. Evol. 17:369-378.
    Badyaev, A. V. 2002b. Male and Female Growth in Sexually Dimorphic Species: Harmony, Conflict, or Both? Comm. Theor. Biol. 7:11-33.
    Badyaev, A. V. and A. Qvarnström. 2002. Putting sexual traits into the context of an organism: a life-history perspective in studies of sexual selection. Auk 119:301-310.
    Barton, N. and M. Turelli. 1991. Natural and sexual selection on many loci. Genetics 127:229-255.
    Björklund, M. 1990. A phylogenetic interpretation of sexual dimorphism in body size and ornament in relation to mating system in birds. J. Evol. Biol. 3:171-183.
    Blanckenhorn, W. U. 2005. Behavioral causes and consequences of sexual size dimorphism. Ethology 111:977-1016.
    Blanckenhorn, W. U., A. F. Dixon, D. J. Fairbairn, M. W. Foellmer, P. Gibert, K. van der Linde, R. Meier, S. Nylin, S. Pitnick, and C. Schoff. 2007. Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am. Nat. 169:245-257.
    Bonduriansky, R. and C. E. Brassil. 2005. Reproductive ageing and sexual selection on male body size in a wild population of antler flies (Protopiophila litigata). J. Evol. Biol. 18:1332-1340.
    Butler, M. A. 2007. Vive le difference! Sexual dimorphism and adaptive patterns in lizards of the genus Anolis. Integr. Comp. Biol. 47:272-284.
    Conn, J. S. and U. Blum. 1981. Differentiation between the sexes of Rumex hastatulus in net energy allocation, flowering and height. Bullet. Torr. Club 108:446-455.
    Cox, R. M. and H. B. John-Alder. 2007a. Increased mite parasitism as a cost of testosterone in male striped plateau lizards Sceloporus virgatus. Funct. Ecol. 21:327-334.
    Cox, R. M. and H. B. John-Alder. 2007b. Growing apart together: the development of contrasting sexual size dimorphism in sympatric Sceloporus lizards. Herpetologica 63:245-257.
    Cox, R. M. and Calsbeek. 2009. Sexually antagonistic selection, sexual dimorphism, and the resolution of intralocus sexual conflict. Am. Nat. 173: 176-187.
    Crowley, P. H. 2000. Sexual dimorphism with female demographic dominance: age, size and sex ration at maturation. Ecology 81:2592-2605.
    Derocher, A. and Ø. Wiig. 2002. Postnatal growth in body length and mass of polar bears (Ursus maritimus) at Svalbard. J. Zool. 256:343-349.
    Dmitriew, C. M. 2011. The evolution of growth trajectories: what limits growth rate? Biol. Rev. 86:97-116.
    Fairbairn, D. J. 1997. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Syst. 28:659-687.
    Fairbrain, D. J., W. U. Blanckenhorn, and T. Székely. 2007. Sex, size,and gender roles: evolutionary studies of sexual size dimorphism. Oxiforn University Press, Oxiford.
    Fincke, O. M. 2004. Polymorphic signals of harrased female odonates and the males that learn them support a novel frequency-dependent model. Anim. Behav. 67:833-845.
    Gilburn, A., S. Foster, and T. Day. 1993. Genetic correlation between a female mating preference and the preferred male character in seaweed flies (Coelopa frigida). Evolution 47:1788-1795.
    Gray, D. A. 1999. Intrinsic factors affecting female choice in house crickets: time cost, female age, nutritional condition, body size, and size-relative reproductive investment. J. Insect Behav. 12:691-700.
    Hasumi, M. 2013. Age, body size, and sexual dimorphism in size and shape in Salamandrella keyserlingii (Causata: Hynobiidae). Evol Biol 37:38-48.
    Isaac, J. L. 2005. Potential causes and life‐history consequences of sexual size dimorphism in mammals. Mammal Rev. 35:101-115.
    Iwasa, Y., A. Pomiankowski, and S. Nee. 1991. The evolution of costly mate preferences II. The'handicap'principle. Evolution 45:1431-1442.
    Johnston, R. F. and R. C. Fleischer. 1981. Overwinter mortality and sexual size dimorphism in the house sparrow. Auk 98:503-511.
    Laaksonen, T., E. Korpimäki, and H. Haakkarainen. 2002. Interactive effects of parental age and environmental variation on the breeding perfermance of Tengmalm’s owl. J. Anim. Ecol. 71:23-31.
    Lande, R. and S. J. Arnold. 1985. Evolution of mate preference and sexual dimorphism. J. Theor. Biol. 117:651-664.
    Lagarde, F., X. Bonnet, B. T. Henen, J. Corbin, K. A. Nagy, and G. Naulleau. 2001. Sexual size dimorphism in steppe tortoises (Testudo horsfieldi): growth, maturity, and individual variation. Can. J. Zool. 79:1433-1441.
    Leigh, S. R. and B. T. Shea. 1995. Ontogeny and the evolution of adult body size dimorphism in apes. Am. J. Primatol. 36:37-60.
    Manicom, C., R. Alford, T. W. Schoener, and L. Schwarzkopf. 2014. Mechanisms causing variation in sexual size dimorphism in three sympatric, congeneric lizards. Ecology 95:1531-1544.
    McElligott, A. G., M. P. Gammell, H. C. Harty, D. R. Paini, D. T. Murphy, J. T. Walsh, and T. J. Hayden. 2001. Sexual size dimorphism in fallow deer (Dama dama): do larger, heavier males gain greater mating success? Behav. Ecol. Sociol. 49:266-272.
    Murphy, S. and E. Rogan. 2006. External morphology of the short‐beaked common dolphin, Delphinus delphis: growth, allometric relationships and sexual dimorphism. Acta Zool. 87:315-329.
    Nakazawa, T. and N. Yamamura. 2007. Breeding migration and population stability. Popul. Ecol. 49: 101-113.
    Noonan, K. C. 1983. Female mate choice in the cichlid fich Cichlasoma nigrofasciatum. Anim. Bahav. 31:1005-1010.
    Pomiankowski, A. and Y. Iwasa. 1993. Evolution of multiple sexual preferences by Fisher's runaway process of sexual selection. Proc. R. Soc. B. 253:173-181.
    Pomiankowski, A., Y. Iwasa, and S. Nee. 1991. The evolution of costly mate preferences I. Fisher and biased mutation. Evolution 45:1422-1430.
    Price, T. D. 1984. The evolution of sexual size dimorphism in Darwin’s Finches. Am. Nat. 123:500-518.
    Puniamoorthy, N., M. A. Schäfer, and W. U. Blanckenhorn. 2012. Sexual selection accounts for the geographic reversal of sexual size dimorphism in the dung fly, sepsis punctum (Diptera: Sepsidae). Evolution 66:2117-2126.
    Promislow, D. E. L., R. Montgomerie, and T. E. Martin. 1992. Mortality costs of sexual dimorphism in birds. Proc. R. Soc. B 250:143-150.
    Reeve, J, P. and D. J. Fairbairn. 1996. Sexual size dimorphism as a correlated response to selection on body size: an empirical test of the quantitative genetic model. Evolution 50:1927-1938.
    Reynolds, J. D. and M. R. Gross. 1992. Female mate preference enhances offspring growth and reproduction in a fish, Poecilia reticulata. Proc. R. Soc. B 250:57-62.
    Rosenthal, G. G. and C. S. Evans. 1988. Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc. Natl. Acad. Sci. 95:4431-4436.
    Ruth Archer, C., E. Duffy, D. J. Hosken, M. Mokkonen, K. Okada, K. Oku, M. D. Sharma, and J. Hunt. 2014. Sex‐specific effects of natural and sexual selection on the evolution of life span and ageing in Drosophila simulans. Funct. Ecol. In press.
    Stillwell, R. C. and G. Davidowitz. 2010. Sex difference in phenotypic plasticity of a mechanism that controls body size: implications for sexual size dimorphism. Proc. R. Soc. B 277: 3819-3826.
    Shine, R. 1990. Proximate determinants of sexual differences in adult body size. Am. Nat. 135:278-283.
    Smith, M. D. and H. J. Brockmann. 2014. The evolution and maintenance of sexual size dimorphism in horseshoe crabs: an evaluation of six functional hypotheses. Anim. Behav. 96:127-139.
    Takahashi, Y., J. Yoshimura, S. Morita, and M. Watanabe. 2010. Negative frequency-dependnet selection in female color polymorphism of a damselfly. Evolution 64:3620-3628.
    Tazzyman, S. J., Y. Iwasa, and A. Pomiankowski. 2014. Signaling efficacy drives the evolution of larger sexual ornaments by sexual selection. Evolution 68:216-229.
    Testa, N. D., S. M. Ghosh, and A. W. Shingleton. 2013. Sex-specific weight loss mediates sexual size dimorphism in Drosophila melanogaster. PLoS ONE 8:e58936.
    Webster, M. S. 1992. Sexual dimorphism, mating system and body size in New World blackbirds (Icterinae). Evolution 46:1621-1641.
    Weckerly, F. W. 1998. Sexual-size dimorphism: influence of mass and mating systems in the most dimorphic mammals. J. Mammal. 79:33-52.
    Welbergen, J. 2010. Growth, bimaturation, and sexual size dimorphism in wild gray-headed flying foxes (Pteropus poliocephalus). J. Mammal. 91:38-47.
    Wong, R. Y., P. So, and M. E. Cummings. 2011. How female size and male displays influence mate preference in a swordtail. Anim. Behav. 82:691-697.
    Zhang, L. and X. Lu. 2013. Sexual size dimorphism in anurans: ontogenetic determination revealed by an across-species comparison. Evol. Biol. 40:84-91.

    下載圖示 校內:立即公開
    校外:2016-02-13公開
    QR CODE