| 研究生: |
張涪亮 Setiono, Anton |
|---|---|
| 論文名稱: |
硫化鉍基奈米粒子在還原氧化石墨烯上之綴飾與特性分析 Decoration and Characterization of Bi2S3-based Nanoparticles on Reduced Graphene Oxide |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 鉍基光觸媒 、奈米棒 、還原氧化石墨烯 、金屬硫化物 |
| 外文關鍵詞: | bismuth based photocatalysts, nanorods, reduced graphene oxide, metal sulfide. |
| 相關次數: | 點閱:119 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因為在地球上的豐富蘊含量及其無獨特性, 硫化鉍在許多領域都被廣泛的研究. 在本研究中,透過許多方法製備出的硫化鉍基奈米粒子在還原氧化石墨烯之複合材料 (rGO/Bi2S3), 奇形態和性質都可以被觀察. 制備硫化鉍 (rGO/Bi2S3) 奈米粒子的方法為水熱法和熱液法, 而兩者都可以制備出硫化鉍奈米棒並且具有非常大的尺寸和嚴重的團聚. 在氧化石墨烯的存在下, 硫化鉍的形態出現了一些變化, 硫化鉍奈米棒的尺寸變小而聚集的程度也降低了. 許多實驗參數對於硫化鉍和硫化鉍基奈米粒子在還原氧化石墨烯的影響, 這些參數包括了前驅鹽的濃度, 制備時間,氧化石墨烯的含量, 容劑, 包覆劑以及其他金屬硫化物. 而在本研究中使用的金屬硫化物為硫化銀 (Ag2S), 其製備方法為水熱法. 透過一部及兩部水熱法, 兩種金屬硫化物皆可以結合在一起並製備出來, 而以不同的製備方法也會造成不一樣的形態以及晶體結構. 透過在300瓦氙燈照射下以及不同實驗參數的亞甲基藍染料的光降解, 製備出來的奈米 複合材料的光催化特性可以被探討. 根據實驗結果, 製備出來的奈米複合材料的光催化表現並不是很好, 所以製此材料並不適合作為光催化觸媒, 但可能可被應用在諸如超級電容器及電話學探測器等的其他用途上.
As a non-toxic material and abundant resource in the face of the earth, bismuth sulfide was studied extensively in many fields. In this study, rGO/Bi2S3 was synthesized using various methods to observe its morphology and properties. The methods used to synthesized Bi2S3 are hydrothermal and solvothermal methods. Both of them led to nanorod structured Bi2S3 with a very large size and heavy agglomeration. In the presence of graphene oxide, there are some changes in the morphology of Bi2S3, which have shorter rod size and lower agglomeration degree. Parameter changes was done to see its effect on Bi2S3 and rGO/Bi2S3 morphology, these parameters are, precursor concentration, synthesis time, GO content, solvents, the presence of capping agent, and the presence of other metal sulfide. The other metal sulfide used for this experiment is silver sulfide (Ag2S), which also synthesized using hydrothermal method. The combination of two metal sulfides with rGO, which is rGO/Bi2S3-Ag2S, was synthesized using 1-step hydrothermal and 2-step hydrothermal method. From these two methods the morphology of product produced was different and has different crystal structure. The photocatalytic properties of synthesized nanocomposites was observed by photodegradation of methylene blue dye under the irradiation of light from 300 W xenon lamp and also using various photocatalytic parameters. From the test results, the photocatalytic performance of product synthesized was not good for practical use, thus this material is not suitable for photocatalyst but for other applications such as supercapacitor and electrochemical sensor.
REFERENCES
1. Avouris, P. and C. Dimitrakopoulos, Graphene: synthesis and applications. Materials Today, 2012. 15(3): p. 86-97.
2. He, D., Y. Jiang, H. Lv, M. Pan, and S. Mu, Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Applied Catalysis B: Environmental, 2013. 132–133(0): p. 379-388.
3. Yu, Y., C.H. Jin, R.H. Wang, Q. Chen, and L.M. Peng, High-Quality Ultralong Bi2S3 Nanowires: Structure, Growth, and Properties. The Journal of Physical Chemistry B, 2005. 109(40): p. 18772-18776.
4. Latorre-Sánchez, M., A. Primo, and H. García, P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water–Methanol Mixtures. Angewandte Chemie International Edition, 2013. 52(45): p. 11813-11816.
5. Xiang, Q., B. Cheng, and J. Yu, Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Applied Catalysis B: Environmental, 2013. 138–139(0): p. 299-303.
6. Zhang, W., A.M. Asiri, D. Liu, D. Du, and Y. Lin, Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends in Analytical Chemistry, 2014. 54(0): p. 1-10.
7. Kiser, M.A., P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera, and K. Hristovski, Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants. Environmental Science & Technology, 2009. 43(17): p. 6757-6763.
8. Tang, W.-W., G.-M. Zeng, J.-L. Gong, J. Liang, P. Xu, C. Zhang, and B.-B. Huang, Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Science of The Total Environment, 2014. 468–469(0): p. 1014-1027.
9. Liu, S., Z. Chen, N. Zhang, Z.-R. Tang, and Y.-J. Xu, An Efficient Self-Assembly of CdS Nanowires–Reduced Graphene Oxide Nanocomposites for Selective Reduction of Nitro Organics under Visible Light Irradiation. The Journal of Physical Chemistry C, 2013. 117(16): p. 8251-8261.
10. Huang, J., H. Zhang, X. Zhou, and X. Zhong, Dimensionality-dependent performance of nanostructured bismuth sulfide in photodegradation of organic dyes. Materials Chemistry and Physics, 2013. 138(2–3): p. 755-761.
11. Sun, B., Z. Qiao, K. Shang, H. Fan, and S. Ai, Facile synthesis of silver sulfide/bismuth sulfide nanocomposites for photocatalytic inactivation of Escherichia coli under solar light irradiation. Materials Letters, 2013. 91(0): p. 142-145.
12. Marambio-Jones, C. and E.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010. 12(5): p. 1531-1551.
13. Guo, C., J. Xu, S. Wang, Y. Zhang, Y. He, and X. Li, Photodegradation of sulfamethazine in an aqueous solution by a bismuth molybdate photocatalyst. Catalysis Science & Technology, 2013. 3(6): p. 1603-1611.
14. Wang, P., Y. Tang, Z. Dong, Z. Chen, and T.-T. Lim, Ag-AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. Journal of Materials Chemistry A, 2013. 1(15): p. 4718-4727.
15. Lin, T.-Y. and D.-H. Chen, One-step green synthesis of arginine-capped iron oxide/reduced graphene oxide nanocomposite and its use for acid dye removal. RSC Advances, 2014. 4(56): p. 29357-29364.
16. Song, X., Z. Wang, Z. Li, and C. Wang, Ultrafine porous carbon fibers for SO2 adsorption via electrospinning of polyacrylonitrile solution. Journal of Colloid and Interface Science, 2008. 327(2): p. 388-392.
17. Ki, C.S., E.H. Gang, I.C. Um, and Y.H. Park, Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. Journal of Membrane Science, 2007. 302(1–2): p. 20-26.
18. Liu, J., Y. Xue, M. Zhang, and L. Dai, Graphene-based materials for energy applications. MRS Bulletin, 2012. 37(12): p. 1265-1272.
19. Vrubel, H. and X. Hu, Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst. ACS Catalysis, 2013. 3(9): p. 2002-2011.
20. Kamat, P.V., Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters†. The Journal of Physical Chemistry C, 2008. 112(48): p. 18737-18753.
21. Nozik, A.J., Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures, 2002. 14(1–2): p. 115-120.
22. Liu, Y.-L., Z.-M. Liu, Y. Yang, H.-F. Yang, G.-L. Shen, and R.-Q. Yu, Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials. Sensors and Actuators B: Chemical, 2005. 107(2): p. 600-604.
23. Gobbert, M.K. and T.S. Cale, Modeling multiscale effects on transients during chemical vapor deposition. Surface and Coatings Technology, 2007. 201(22–23): p. 8830-8837.
24. Itoh, T., Synthesis of carbon nanowalls by hot-wire chemical vapor deposition. Thin Solid Films, 2011. 519(14): p. 4589-4593.
25. Huczko, A., Template-based synthesis of nanomaterials. Applied Physics A, 2000. 70(4): p. 365-376.
26. Chen, L., E. Alarcón-Lladó, M. Hettick, I.D. Sharp, Y. Lin, A. Javey, and J.W. Ager, Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting. The Journal of Physical Chemistry C, 2013. 117(42): p. 21635-21642.
27. Valentini, A., A. Convertino, M. Alvisi, R. Cingolani, T. Ligonzo, R. Lamendola, and L. Tapfer, Synthesis of silicon carbide thin films by ion beam sputtering. Thin Solid Films, 1998. 335(1–2): p. 80-84.
28. Rajamathi, M. and R. Seshadri, Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Current Opinion in Solid State and Materials Science, 2002. 6(4): p. 337-345.
29. Sōmiya, S. and R. Roy, Hydrothermal synthesis of fine oxide powders. Bulletin of Materials Science, 2000. 23(6): p. 453-460.
30. Zhu, X.H. and Q.M. Hang, Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products. Micron, 2013. 44(0): p. 21-44.
31. Byrappa, K., S. Ohara, and T. Adschiri, Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Advanced Drug Delivery Reviews, 2008. 60(3): p. 299-327.
32. Bang, J.H. and K.S. Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials. Advanced Materials, 2010. 22(10): p. 1039-1059.
33. Gedanken, A., Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004. 11(2): p. 47-55.
34. Suslick, K.S., T. Hyeon, and M. Fang, Nanostructured Materials Generated by High-Intensity Ultrasound: Sonochemical Synthesis and Catalytic Studies. Chemistry of Materials, 1996. 8(8): p. 2172-2179.
35. Cheng, C., B. Lv, Y. Li, J. Wang, J. He, H. Yuan, and D. Xiao, A facile photochemical route for the synthesis of gold nanoparticles. Inorganic Materials, 2011. 47(2): p. 121-127.
36. Fernandez-Merino, M.J., L. Guardia, J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascon, Developing green photochemical approaches towards the synthesis of carbon nanofiber- and graphene-supported silver nanoparticles and their use in the catalytic reduction of 4-nitrophenol. Rsc Advances, 2013. 3(40): p. 18323-18331.
37. Martínez-Orozco, R.D., H.C. Rosu, S.-W. Lee, and V. Rodríguez-González, Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites. Journal of Hazardous Materials, 2013. 263, Part 1(0): p. 52-60.
38. Bera, D., S. Kuiry, and S. Seal, Synthesis of nanostructured materials using template-assisted electrodeposition. JOM, 2004. 56(1): p. 49-53.
39. Miao, S., Z. Ning, K. Hongmin, W. Xiaoyang, Y. Feiyi, and F. Tingting, The Development of Nanocrystalline Materials Prepared by Electrodeposition. Advanced Materials Research, 2013. 690-693: p. 458-461.
40. Zhitomirsky, I., A. Petric, and M. Niewczas, Nanostructured ceramic and hybrid materials via electrodeposition. JOM, 2002. 54(9): p. 31-34.
41. Zou, R., G. He, K. Xu, Q. Liu, Z. Zhang, and J. Hu, ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. Journal of Materials Chemistry A, 2013. 1(29): p. 8445-8452.
42. Sun, Y., B. Qu, Q. Liu, S. Gao, Z. Yan, W. Yan, B. Pan, S. Wei, and Y. Xie, Highly efficient visible-light-driven photocatalytic activities in synthetic ordered monoclinic BiVO4 quantum tubes-graphene nanocomposites. Nanoscale, 2012. 4(12): p. 3761-3767.
43. Yu, L.H., H. Ruan, Y. Zheng, and D.Z. Li, A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. Nanotechnology, 2013. 24(37).
44. Xu, Y., H. Xu, L. Wang, J. Yan, H. Li, Y. Song, L. Huang, and G. Cai, The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. Dalton Transactions, 2013. 42(21): p. 7604-7613.
45. Qu, D., M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, and Z. Sun, Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013. 5(24): p. 12272-12277.
46. Zhang, J., W. Zhang, and Z. Yang, A chemical lithography route to Bi2S3 nanotubes. Applied Surface Science, 2011. 257(14): p. 6239-6242.
47. Phuruangrat, A., T. Thongtem, and S. Thongtem, Characterization of Bi2S3 nanorods and nano-structured flowers prepared by a hydrothermal method. Materials Letters, 2009. 63(17): p. 1496-1498.
48. Tang, X., Q. Tay, Z. Chen, Y. Chen, G.K.L. Goh, and J. Xue, CuInZnS-decorated graphene nanosheets for highly efficient visible-light-driven photocatalytic hydrogen production. Journal of Materials Chemistry A, 2013. 1(21): p. 6359-6365.
49. An, X., X. Yu, J.C. Yu, and G. Zhang, CdS nanorods/reduced graphene oxide nanocomposites for photocatalysis and electrochemical sensing. Journal of Materials Chemistry A, 2013. 1(16): p. 5158-5164.
50. Huang, H., S. Wang, N. Tian, and Y. Zhang, A one-step hydrothermal preparation strategy for layered BiIO4/Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. RSC Advances, 2014. 4(11): p. 5561-5567.
51. Ye, A., W. Fan, Q. Zhang, W. Deng, and Y. Wang, CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation. Catalysis Science & Technology, 2012. 2(5): p. 969-978.
52. Huang, H., Y. He, Z. Lin, L. Kang, and Y. Zhang, Two Novel Bi-Based Borate Photocatalysts: Crystal Structure, Electronic Structure, Photoelectrochemical Properties, and Photocatalytic Activity under Simulated Solar Light Irradiation. The Journal of Physical Chemistry C, 2013. 117(44): p. 22986-22994.
53. Zhang, S., Y. Yang, Y. Guo, W. Guo, M. Wang, Y. Guo, and M. Huo, Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions. Journal of Hazardous Materials, 2013. 261(0): p. 235-245.
54. Wang, J., X. Yang, K. Zhao, P. Xu, L. Zong, R. Yu, D. Wang, J. Deng, J. Chen, and X. Xing, Precursor-induced fabrication of [small beta]-Bi2O3 microspheres and their performance as visible-light-driven photocatalysts. Journal of Materials Chemistry A, 2013. 1(32): p. 9069-9074.
55. Ma, X.-Y., L. Liu, W.-L. Mo, H. Liu, H.-Z. Kou, and Y. Wang, Surfactant-assisted solvothermal synthesis of Bi2S3 nanorods. Journal of Crystal Growth, 2007. 306(1): p. 159-165.
56. He, H., S.P. Berglund, P. Xiao, W.D. Chemelewski, Y. Zhang, and C.B. Mullins, Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 2013. 1(41): p. 12826-12834.
57. Xia, J., J. Di, S. Yin, H. Xu, J. Zhang, Y. Xu, L. Xu, H. Li, and M. Ji, Facile fabrication of the visible-light-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity. RSC Advances, 2014. 4(1): p. 82-90.
58. Guan, M., C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, and Y. Xie, Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets. Journal of the American Chemical Society, 2013. 135(28): p. 10411-10417.
59. Chang, X., L. Dong, Y. Yin, and S. Sun, A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets. RSC Advances, 2013. 3(35): p. 15005-15013.
60. Rauf, M.A. and S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 2009. 151(1–3): p. 10-18.
61. Kamat, P.V., Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. The Journal of Physical Chemistry Letters, 2012. 3(5): p. 663-672.
62. Chen, C., W. Ma, and J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010. 39(11): p. 4206-4219.
63. Wu, T., X. Zhou, H. Zhang, and X. Zhong, Bi2S3 nanostructures: A new photocatalyst. Nano Research, 2010. 3(5): p. 379-386.
64. Hu, E.L., X.H. Gao, A. Etogo, Y.L. Xie, Y.J. Zhong, and Y. Hu, Controllable one-pot synthesis of various one-dimensional Bi2S3 nanostructures and their enhanced visible-light-driven photocatalytic reduction of Cr(VI). Journal of Alloys and Compounds, 2014. 611: p. 335-340.
65. Kobasa, I.M. and G.P. Tarasenko, Photocatalysis of Reduction of the Dye Methylene Blue by Bi2S3/CdS Nanocomposites. Theoretical and Experimental Chemistry, 2002. 38(4): p. 255-258.
66. An, X., J.C. Yu, F. Wang, C. Li, and Y. Li, One-pot synthesis of In2S3 nanosheets/graphene composites with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2013. 129(0): p. 80-88.
67. Yu, H., J. Huang, H. Zhang, Q. Zhao, and X. Zhong, Nanostructure and charge transfer in Bi 2 S 3 -TiO 2 heterostructures. Nanotechnology, 2014. 25(21): p. 215702.
68. Ma, J., J. Yang, L. Jiao, T. Wang, J. Lian, X. Duan, and W. Zheng, Bi2S3 nanomaterials: morphology manipulation and related properties. Dalton Transactions, 2011. 40(39): p. 10100-10108.
69. Calzia, V., G. Malloci, G. Bongiovanni, and A. Mattoni, Electronic Properties and Quantum Confinement in Bi2S3 Ribbon-Like Nanostructures. The Journal of Physical Chemistry C, 2013. 117(42): p. 21923-21929.
70. Li, Y., F. Wei, Y. Ma, H. Zhang, Z. Gao, L. Dai, and G. Qin, Selected-control hydrothermal synthesis and photoresponse properties of Bi2S3 micro/nanocrystals. CrystEngComm, 2013. 15(33): p. 6611-6616.
71. Aresti, M., M. Saba, R. Piras, D. Marongiu, G. Mula, F. Quochi, A. Mura, C. Cannas, M. Mureddu, A. Ardu, G. Ennas, V. Calzia, A. Mattoni, A. Musinu, and G. Bongiovanni, Colloidal Bi2S3 Nanocrystals: Quantum Size Effects and Midgap States. Advanced Functional Materials, 2014. 24(22): p. 3341-3350.
72. Yin, H., B. Sun, Y. Zhou, M. Wang, Z. Xu, Z. Fu, and S. Ai, A new strategy for methylated DNA detection based on photoelectrochemical immunosensor using Bi2S3 nanorods, methyl bonding domain protein and anti-his tag antibody. Biosensors and Bioelectronics, 2014. 51(0): p. 103-108.
73. Li, G., X. Chen, and G. Gao, Bi2S3microspheres grown on graphene sheets as low-cost counter-electrode materials for dye-sensitized solar cells. Nanoscale, 2014. 6(6): p. 3283-3288.
74. Zhang, Z., C. Zhou, L. Huang, X. Wang, Y. Qu, Y. Lai, and J. Li, Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochimica Acta, 2013. 114(0): p. 88-94.
75. Manna, G., R. Bose, and N. Pradhan, Photocatalytic Au-Bi2S3 Heteronanostructures. Angewandte Chemie-International Edition, 2014. 53(26): p. 6743-6746.
76. Chen, F.-J., Y.-L. Cao, and D.-Z. Jia, A room-temperature solid-state route for the synthesis of graphene oxide-metal sulfide composites with excellent photocatalytic activity. CrystEngComm, 2013. 15(23): p. 4747-4754.
77. Wang, X.T., R. Lv, and K. Wang, Synthesis of ZnO@ZnS-Bi2S3 core-shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance. Journal of Materials Chemistry A, 2014. 2(22): p. 8304-8313.
78. Gao, X., H.B. Wu, L. Zheng, Y. Zhong, Y. Hu, and X.W. Lou, Formation of Mesoporous Heterostructured BiVO4/Bi2S3 Hollow Discoids with Enhanced Photoactivity. Angewandte Chemie, 2014. 126(23): p. 6027-6031.
79. Song, L.M., C. Chen, and S.J. Zhang, Preparation and photocatalytic activity of visible light-sensitive selenium-doped bismuth sulfide. Powder Technology, 2011. 207(1-3): p. 170-174.
80. Ma, L., Q. Zhao, Q. Zhang, M. Ding, J. Huang, X. Liu, Y. Liu, X. Wu, and X. Xu, Controlled assembly of Bi2S3 architectures as Schottky diode, supercapacitor electrodes and highly efficient photocatalysts. RSC Advances, 2014. 4(78): p. 41636-41641.
81. Zhou, J., G.H. Tian, Y.J. Chen, Y.H. Shi, C.G. Tian, K. Pan, and H.G. Fu, Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity. Scientific Reports, 2014. 4.
82. Liu, Z.-Q., W.-Y. Huang, Y.-M. Zhang, and Y.-X. Tong, Facile hydrothermal synthesis of Bi2S3 spheres and CuS/Bi2S3 composites nanostructures with enhanced visible-light photocatalytic performances. CrystEngComm, 2012. 14(23): p. 8261-8267.
83. Ma, D.-K., M.-L. Guan, S.-S. Liu, Y.-Q. Zhang, C.-W. Zhang, Y.-X. He, and S.-M. Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Transactions, 2012. 41(18): p. 5581-5586.
84. Yang, L., W. Sun, S. Luo, and Y. Luo, White fungus-like mesoporous Bi2S3 ball/TiO2 heterojunction with high photocatalytic efficiency in purifying 2,4-dichlorophenoxyacetic acid/Cr(VI) contaminated water. Applied Catalysis B: Environmental, 2014. 156–157(0): p. 25-34.
85. Chen, F., Y. Cao, and D. Jia, Facile synthesis of Bi2S3 hierarchical nanostructure with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2013. 404(0): p. 110-116.
86. Balachandran, S. and M. Swaminathan, The simple, template free synthesis of a Bi2S3-ZnO heterostructure and its superior photocatalytic activity under UV-A light. Dalton Transactions, 2013. 42(15): p. 5338-5347.
87. Yang, H., J. Xie, and C.M. Li, Bi2S3 nanorods modified with Co(OH)2 ultrathin nanosheets to significantly improve its pseudocapacitance for high specific capacitance. RSC Advances, 2014. 4(89): p. 48666-48670.
88. Zhao, Y., D. Gao, J. Ni, L. Gao, J. Yang, and Y. Li, One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Research, 2014. 7(5): p. 765-773.
89. Wang, M., H. Yin, N. Shen, Z. Xu, B. Sun, and S. Ai, Signal-on photoelectrochemical biosensor for microRNA detection based on Bi2S3 nanorods and enzymatic amplification. Biosensors and Bioelectronics, 2014. 53(0): p. 232-237.
90. Chen, J., X.-Q. Yang, Y.-Z. Meng, M.-Y. Qin, D.-M. Yan, Y. Qian, G.-Q. Xu, Y. Yu, Z.-Y. Ma, and Y.-D. Zhao, Reverse microemulsion-mediated synthesis of Bi2S3-QD@SiO2-PEG for dual modal CT-fluorescence imaging in vitro and in vivo. Chemical Communications, 2013. 49(100): p. 11800-11802.
91. Hu, P., Y. Cao, and B. Lu, Flowerlike assemblies of Bi2S3 nanorods by solvothermal route and their electrochemical hydrogen storage performance. Materials Letters, 2013. 106(0): p. 297-300.
92. Zhang, K. and L. Guo, Metal sulphide semiconductors for photocatalytic hydrogen production. Catalysis Science & Technology, 2013. 3(7): p. 1672-1690.
93. Huang, H., S. Wang, Y. Zhang, and P.K. Chu, Band gap engineering design for construction of energy-levels well-matched semiconductor heterojunction with enhanced visible-light-driven photocatalytic activity. RSC Advances, 2014. 4(78): p. 41219-41227.
94. Lv, P., W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W. Zhang, M. Li, H. Yao, and D. Wu, Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity. CrystEngComm, 2013. 15(37): p. 7548-7555.
95. Jiang, S., K. Zhou, Y. Shi, S. Lo, H. Xu, Y. Hu, and Z. Gui, In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity. Applied Surface Science, 2014. 290(0): p. 313-319.
96. Cui, Y., Q. Jia, H. Li, J. Han, L. Zhu, S. Li, Y. Zou, and J. Yang, Photocatalytic activities of Bi2S3/BiOBr nanocomposites synthesized by a facile hydrothermal process. Applied Surface Science, 2014. 290(0): p. 233-239.
97. Cao, J., B. Xu, H. Lin, B. Luo, and S. Chen, Novel heterostructured Bi2S3/BiOI photocatalyst: facile preparation, characterization and visible light photocatalytic performance. Dalton Transactions, 2012. 41(37): p. 11482-11490.
98. Freitag, M., Optical and thermal properties of graphene field-effect transistors. physica status solidi (b), 2010. 247(11-12): p. 2895-2903.
99. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
100. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
101. Wee, A.T.S., Graphene: The Game Changer? ACS Nano, 2012. 6(7): p. 5739-5741.
102. Tu, W., Y. Zhou, and Z. Zou, Versatile Graphene-Promoting Photocatalytic Performance of Semiconductors: Basic Principles, Synthesis, Solar Energy Conversion, and Environmental Applications. Advanced Functional Materials, 2013. 23(40): p. 4996-5008.
103. Sun, Z., J. Guo, S. Zhu, L. Mao, J. Ma, and D. Zhang, A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale, 2014. 6(4): p. 2186-2193.
104. Gao, E., W. Wang, M. Shang, and J. Xu, Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite. Physical Chemistry Chemical Physics, 2011. 13(7): p. 2887-2893.
105. Sun, S., W. Wang, and L. Zhang, Bi2WO6 Quantum Dots Decorated Reduced Graphene Oxide: Improved Charge Separation and Enhanced Photoconversion Efficiency. The Journal of Physical Chemistry C, 2013. 117(18): p. 9113-9120.
106. Sun, Z.H., J.J. Guo, S.M. Zhu, J. Ma, Y.L. Liao, and D. Zhang, High photocatalytic performance by engineering Bi2WO6 nanoneedles onto graphene sheets. Rsc Advances, 2014. 4(53): p. 27963-27970.
107. Song, S., W. Gao, X. Wang, X. Li, D. Liu, Y. Xing, and H. Zhang, Microwave-assisted synthesis of BiOBr/graphene nanocomposites and their enhanced photocatalytic activity. Dalton Transactions, 2012. 41(34): p. 10472-10476.
108. Gao, F., D. Zeng, Q. Huang, S. Tian, and C. Xie, Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Physical Chemistry Chemical Physics, 2012. 14(30): p. 10572-10578.
109. Tian, L., J. Liu, C. Gong, L. Ye, and L. Zan, Fabrication of reduced graphene oxide–BiOCl hybrid material via a novel benzyl alcohol route and its enhanced photocatalytic activity. Journal of Nanoparticle Research, 2013. 15(9): p. 1-11.
110. Madhusudan, P., J. Yu, W. Wang, B. Cheng, and G. Liu, Facile synthesis of novel hierarchical graphene-Bi2O2CO3 composites with enhanced photocatalytic performance under visible light. Dalton Transactions, 2012. 41(47): p. 14345-14353.
111. Sun, A., H. Chen, C. Song, F. Jiang, X. Wang, and Y. Fu, Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. RSC Advances, 2013. 3(13): p. 4332-4340.
112. Zhang, Y., Y. Zhu, J. Yu, D. Yang, T.W. Ng, P.K. Wong, and J.C. Yu, Enhanced photocatalytic water disinfection properties of Bi2MoO6-RGO nanocomposites under visible light irradiation. Nanoscale, 2013. 5(14): p. 6307-6310.
113. Salavati-Niasari, M., Z. Behfard, O. Amiri, E. Khosravifard, and S.M. Hosseinpour-Mashkani, Hydrothermal Synthesis of Bismuth Sulfide (Bi2S3) Nanorods: Bismuth(III) Monosalicylate Precursor in the Presence of Thioglycolic Acid. Journal of Cluster Science, 2013. 24(1): p. 349-363.
114. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
115. Whitener Jr, K.E. and P.E. Sheehan, Graphene synthesis. Diamond and Related Materials, 2014. 46(0): p. 25-34.
116. Poh, H.L., F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, and M. Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale, 2012. 4(11): p. 3515-3522.
117. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
118. Khanchandani, S., P.K. Srivastava, S. Kumar, S. Ghosh, and A.K. Ganguli, Band Gap Engineering of ZnO using Core/Shell Morphology with Environmentally Benign Ag2S Sensitizer for Efficient Light Harvesting and Enhanced Visible-Light Photocatalysis. Inorganic Chemistry, 2014. 53(17): p. 8902-8912.
119. Ye, L., J. Liu, Z. Jiang, T. Peng, and L. Zan, Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental, 2013. 142–143(0): p. 1-7.
120. Kim, W.J., D. Pradhan, B.-K. Min, and Y. Sohn, Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Applied Catalysis B: Environmental, 2014. 147(0): p. 711-725.
121. Ye, L., X. Liu, Q. Zhao, H. Xie, and L. Zan, Dramatic visible light photocatalytic activity of MnOx-BiOI heterogeneous photocatalysts and the selectivity of the cocatalyst. Journal of Materials Chemistry A, 2013. 1(31): p. 8978-8983.