| 研究生: |
許倉訓 Hsu, Chang-hsun |
|---|---|
| 論文名稱: |
應用穩態馬赫反射参震波匯流十次多項式理論與斜震波理論計算穩態馬赫反射流場性質多重解 Calculations of multiple solutions of steady Mach reflections using the tenth degree polynomial equation of three-shock confluences and oblique shock theory |
| 指導教授: |
劉中堅
Liu, Jong-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 斜震波理論 、馬赫反射多重解 、馬赫反射 |
| 外文關鍵詞: | Oblique shock theory, Multiple Mach reflection solutions, Mach reflection |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係延續盧(2008)論文工作,說明與討論應用三震波匯流場十次多項式方程式配合斜震波理論計算穩態馬赫反射 (SMR) 流場三震波理論多重解的方法。四個關於速度,密度與溫度的斜震波公式於本論文討論。 吾人應用三震波匯流場十次多項式方程計算所得馬赫莖上下游壓力比值配合斜震波公式與滑線兩側壓力與轉折角相容條件,輔以馬赫反射之機械平衡與前後分界判斷式可以得到 、 、 、 、 、 主要穩態馬赫反射流場(幾何)性質之多重解。具體言,我們由上述十次多項式方程計算得到馬赫莖壓力比值後代入斜震波波角與轉折角關係式可求得 與 。隨後應用SMR機械平衡條件多項式方程求解其 ,若該解大於給予SMR題目的 ,則所得到的 與 解需分別修改成180°- 及- 以成為Inverse MR 解; 否則所得到的 與 解就是正確的MR之 與 解。其次應用滑線的壓力相容條件配合上述斜震波波角與轉折角關係式及斜震波上/下游流場馬赫數關係式可求得 與 ,此時應用SMR前後分界條件多項式方程求解其 ,若該解大於給予SMR題目的 ,所得的 與 解就是後向反射震波MR正確的答案; 否則所得到該 與 解需分別修改成180°- 及- 以成為前向反射震波MR正確之 與 的解。
This thesis is an extension of Lu’s (2008) work。Predictions or calculations of multiply possible theoretical solutions of steady Mach reflections (MR) using the tenth degree polynomial equation of three-shock confluences combining with oblique shock calculations are discussed and analyzed. Four additional oblique shock reflections concerning velocity、density and temperate are reported in this work.
Multiply possible theoretical solutions of steady MR can be systematically analyzed by examining (pressure-deflection) shock polar solutions. In particularly, it is noteworthy that, as ’s systematically decrease from beyond forbidden ( < 1) to Wuest limit, forward/backward facing separating, then to incident Mach angle conditions, the intersected solutions (between incident and reflected shock polars) move from beneath to , forward-facing and then to backward-facing reflected shock solutions. They finally enter into the inverse MR regime before reaching the incident Mach angle condition. One first obtains the Mach stem pressure ratio from the SMR tenth degree polynomial equation, then wave and deflection oblique shock relations are used to calculate and , respectively. Theoretical SMR von Neumann condition polynomial equation is then applied to determine this . If the problem given < von Neumann’s , the obtained and are inverse MR solutions with being corrected to be 180°- and - , respectively. Otherwise, the obtained and are correct solutions of MR. The same wave and defection oblique shock relations, oblique shock relations of pressure ratio and up/down -stream flow Mach numbers relations together with slipstream pressure compatibility conditions are then used to calculate and . Finally, theoretical separating forward-/backward- facing reflected shock polynomial equation is applied to determine this critical . If the problem’s < separating forward-/backward-facing reflected shock solution’s , the obtained and are correct backward-facing reflected shock solutions. Otherwise, they are forward-facing reflected shock solutions with being 180°-calculated and being –calculated . may also be effectively obtained by using = - with being correctly calculated as described above.
Ben-Dor, G. and Glass, I.I. (1979) “Domains and boundaries of nonstationary oblique shock wave reflexions. 1. Diatomic gas,” J. Fluid Mech. Vol. 92, pp. 459-496.
Ben-Dor, G, and Takayama K. (1992) “The phenomena of shock wave reflection – a review of unsolved problems and future research needs,”
Shock Waves.
Barbosa, F. J. & Skews, B. W. (2002) “Experimental confirmation of the von Neumann theory of shock wave reflection transition” J. Fluid Mech., Vol. 472, pp. 263-282.
Griffith, W.C. (1981) “Shock waves.,” J. Fluid Mech, Vol. 106, pp. 81-101.
Henderson, L. F. (1964) “On the Confluence of Three Shock Waves in a Perfect Gas, ” Aero. Quart., Vol. 15, pp. 181-197.
Liu, J.J. (1996) “Sound Wave Structures Downstream of Pseudo-Steady Weak and Strong Mach Reflections,” J. Fluid Mech., Vol. 324, pp. 309-332.
Li, H., Chpoun, A. & Ben-Dor, G. (1999) “Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows,”J. Fluid Mech., Vol. 390, pp. 25-43.
Jong-Jian Liu (2009) “Theoretical formulas characterizing different regimes of perfect-gas three-shock theoretical solutions of steady Mach reflections,” The 27th International Symposium on Shock Waves, St. Petersburg, Russia.
Jong-Jian Liu and Tzu-I Tseng (2007) “ , , -root characteristics of multiply possible theoretical solutions of steady Mach reflections in perfect diatomic gases,” The 26th International Symposium on Shock Waves, Gottingen, Germany.
Liu, J.J., Chuang, C.C Chuang, H.W. (2002) “Multiple Solutions of Steady Mach Reflections in Monatomic Gases,” The 19th Nat’l Conference on Mechanical Engineering, Yun-Lin, No. A5-004.
Jong-Jian Liu (2005) "Theoretical expressions for limiting conditions separating different regimes of perfect-gas three-shock theoretical solutions of steady Mach reflection,"第二十九屆中華民國力學學會暨全國力學會議, 新竹, pp. B025-1 – B025-8.
Jong-Jian Liu (2003) "Multiply possible three-shock theoretical solutions of steady Mach reflections in triatomic perfect-gases" The 5th International Workshop on Shock/Vortex Interactions, Kaohsiung, Taiwan, pp. 105-111.
Neumann, J. von. (1943) “Oblique Reflection of Shocks,” Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC.
Neumann, J. von (1945) “Refraction, interaction and reflection of shock waves,” NAVORD Rep. 203-45. Navy Dept, Bureau of Ordinance, Washington, DC.
Wecken, F. (1949)“Grenzlagen gegabelten Verdichtungatosse,”Zeitschrift fur Zeitschrift fr Angewandte Mathematik und Mechanik, Vol. 29, No. 5, p. 147.
Wuest, W. (1948)“Zur Theorie des gegabelten Verdichtungatosse,”Zeitschrift fr Angewandte Mathematik und Mechanik, Vol. 28, No. 3, p. 73.
Zakharian A. R., Brio M., Hunter, J. K. & Webb, G. M. (2000) ”The von Neumann paradox in weak shock reflection,” J. Fluid Mech., Vol. 422, pp. 193-205.
盧建邦 (2008)“穩態震波現象的描述暨其相關斜震波理論的計算”國立成功大學工程科學系碩士論文,台南,台灣,中華民國。