| 研究生: |
胡幃傑 Hu, Wei-Chieh |
|---|---|
| 論文名稱: |
房間火災之數值模擬與對沖流擴散火焰合成奈米碳結構分析 Simulations on Room Fires and Analysis on Carbon Nano-Structures in Counterflow Diffusion Flames |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 數值模擬 、FDS 、房間火災 |
| 外文關鍵詞: | Numerical simulation, FDS, Room fire |
| 相關次數: | 點閱:92 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以美國NIST 所發展的FDS (Fire Dynamic Simulator)進行房間火災之模擬,並與以往的實驗結果互相比對,探討運用模擬計算程式所需考慮的基本設定與參數變化造成的影響,藉此增進模擬火災場景的準確度。
模擬對象為6m×5m×2.4m 的實驗屋,內部牆面設有木質壁裝,中央
則有木框架作為火源。除基本的格點大小及外部空間等測試外,並比較模擬結果與實驗間之差異,而對FDS 的參數設定加以探討,包含有材料
性質、通風條件與氧氣極限。材質設定接近真實材質時,模擬較為準確。材質設定可分為燃料與周遭環境兩部分:燃料材質的灰份比例影響被引燃的難易,但最大熱釋放率僅受燃料的總表面積影響。天花板的材質則主要影響天花板下方的氣體溫度,氣體溫度較高時,較易引燃相鄰物體。通風較差的單開口場景中,燃料的影響則非常小;相較下,加強天花板隔熱在兩場景中皆可造成熱釋放率與溫度上升。降低氧氣極限可改善材質中灰份造成的熱釋放率與氧氣消耗延遲現象,高灰份比例時,氧氣極限的改善幅度較大,但僅適用於通風條件良好的場景。
模擬結果在雙開口場景中其熱釋放率與實驗相當符合,整體溫度變化
在趨勢上相符,但場景中的氧氣濃度與通風不良處的溫度與實際情況差距甚大;單開口場景模擬中,並無法一次引燃四周壁裝,僅能造成局部壁裝點燃,維持不至完全熄滅,模擬與實驗進入不同的燃燒模式。但是在兩場景中,閃燃發生前的模擬皆相當準確。
In this research, simulations on room fires are conducted using FDS(Fire Dynamic Simulator) developed by NIST. The results are compared with experimental data, and the influence of basic settings and parameters required for FDS input is investigated to improve the accuracy of simulations.
The object of simulation is a 6m×5m×2.4m room with brick walls. A set of cabinets and wood boards were fixed on four walls while wood cribs were set in the center as the fire source. Fundamental CFD property tests are conducted, such as mesh size and external domain for boundary conditions.
The influence of several parameters in FDS is discussed, including material properties, ventilation condition, and oxygen limit. Simulation accuracy increase when the material properties are set close to real values. And the ash content of fuel affects ignition timing significantly.
Lower the oxygen limit can increase the heat release rate and oxygen consumption rate which are delayed by ash contents. But the results above can only be observed in well ventilated scenes.
Simulation results of the two-door scenario perfectly matched the experimental results in heat release rates and temperature variations. But the oxygen concentration and the local temperature in poor ventilation regions fail to match the experimental data. In simulations of the one-door scenario, the cabinets and boards do not ignite, which leads to a combustion mode different from experiment. Simulation results fit the experiment well in both scenarios only before flash-over.
1. 中華民國內政部消防署,http://www.nfa.gov.tw/。
2. Quintiere, J. G., “Fire Behavior in Building Compartments,” Proceedings of the Combustion Institute, Vol. 29, pp. 181-193, 2002.
3. Gross, D. and Robertson, A. F., “Experimental Fires In Enclosures,” 10th Symposium International on Combustion, Cambridge, Angleterre. pp. 931-942, 1964.
4. Kawagoe, K., “Fire Behavior In Rooms,” Building Research Institute, Report No. 27, Ministry of Construction, Tokyo, Japan, 1958.
5. “建築物室內裝修火載量評估技術研究”,內政部建築研究所,
092-301070000-G2017,2003。
6. “性能設計與設計火源檢證研究-火載量與閃燃時間評估在性能法規上之應用研究”,內政部建築研究所,094-301070000-G1009,2005。
7. Chow, W. K., “Assessment on Heat Release Rate of Furniture Foam Arrangement by a Cone Calorimeter,” Journal of Fire Sciences, Vol. 20, pp. 319-328, 2002.
8. 紀博欽,“機車與沙發的實尺寸火災分析”,國立成功大學機械工程學系碩士論文,民國94年。
9. Babrauskas, V., “Burning Rates,” The SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Chapter 3-1, 1988.
10. McCaffrey, B. J., Quintiere, J. G. and Harkleroad, M. F., “Estimating Room Temperature and Likelihood of Flashover Using Fire Test DataCorrelation,” Fire Technology, Vol. 17, pp. 98-119, 1981.
11. Mowrer, F. and Williamson, B., “Estimating Room Temperatures From Fires Along Walls and in Corners,” Fire Technology, Vol. 23, pp. 133-145, 1987.
12. Peacock, R. D., Reneke, P. A., Bulowaski, R. W. and Babrauskas, V.,“Defining Flashover for Fire Hazard Calculations,” Fire Safety Journal, Vol. 32, pp. 331-345, 1999.
13. Ma, T. G. and Quintiere, J. G., “Numerical Simulation of Axi-Symmetric Fire Plumes: Accuracy and Limitations,” Fire Safety Journal, Vol. 38, pp. 467-492, 2003.
14. McGrattan, K. B., Baum, H. R. and Rehm, R. G., “Large Eddy Simulations of Smoke Movement”, Fire Safety Journal, Vol. 30, pp. 161-178, 1998.
15. Kwon, J., “Evaluation of FDS V.4: Upward Flame Spread,” M. S. Thesis, Worcester Polytechnic Institute, 2006.
16. Musser. A. and McGrattan, K., “Evaluation of a Fast Large-Eddy-Simulation Model for Indoor Airflows,” Journal of Architectural Engineering, Vol. 8, pp. 10-18, 2002.
17. Cheung, A. L. K., Lee, E. W. M., Yuen, R. K. K., Yeoh, G. H. and Cheung, S. C. P., “Capturing the Pulsation Frequency of a Buoyant Pool Fire Using the Large Eddy Simulation Approach,” Numerical Heat Transfer, Part A: Applications, Vol. 53, pp. 561-576, 2008.
18. Wen, J. X., Kang, K., Donchev, T. and Karwatzki, J. M., “Validation of FDS for the Prediction of Medium-Scale Pool Fires,” Fire Safety Journal, Vol. 42, pp. 127-138, 2007.
19. Chow, W. K. and Zou, G. W., “Correlation Equations on Fire-Induced Air Flow Rates through Doorway Derived by Large Eddy Simulation,”Building and Environment, Vol. 40, pp. 897-906, 2005.
20. Kim, S. C. and Ryou, H. S., “An Experimental and Numerical Study on Fire Suppression Using a Water Mist in an Enclosure,” Building and Environment, Vol. 38, pp. 1309-1316, 2003.
21. Zou, G. W. and Chow, W. K., “Evaluation of the Field Model, Fire Dynamics Simulation, for a Specific Experimental Scenario,” Journal of Fire Protection Engineering, Vol. 15, pp. 77-92, 2005.
22. Zhang, W., Hamer, A., Klassen, M., Carpenter, D. and Roby, R.,“Turbulence Statistics in a Fire Room Model by Large Eddy Simulation,” Fire Safety Journal, Vol. 37, pp. 721-752, 2002.
23. Lin, C. S., Wang, S. C., Hung, C. B. and Hsu, J. H., “Ventilation Effect on Fire Smoke Transport in a Townhouse Building,” Heat Transfer-Asian Research, Vol. 35, pp. 387-401, 2006.
24. Shen, T. S., Huang, Y. H. and Chien, S. W., “Using Fire Dynamic Simulation to Reconstruct an Arson Fire Scene,” Building and Environment, Vol. 43, pp. 1036-1045, 2008.
25. Pope, N. D. and Bailey, C. G., “Quantitative Comparison of FDS and Parametric Fire Curves with Post-Flashover Compartment Fire Test Data,” Fire Safety Journal, Vol. 41, pp. 99-110, 2006.
26. Hu, Z., Utiskul, Y., Quintiere, J. G. and Trouve, A., “Towards Large Eddy Simulations of Flame Extinction and Carbon Monoxide Emission in Compartment Fires,” Proceedings of Combustion Institute, Vol. 31, pp. 2537-2545, 2007.
27. McGrattan, K. B., “Fire Modeling: Where are we? Where are we going,” Fire Safety Science - Proceedings of The 8th International Symposium, International Association For Fire Safety Science, pp. 53-68, September 2005.
28. 歐陽誠,“可動與固定火載量於房間火災歷程之成用關係”,國立成功大學機械工程學系碩士論文,民國97年。
29. 蕭宜峯,“利用油盤火焰驗證10MW大尺度燃燒分析裝置”,國立成功大學機械工程學系碩士論文,民國93年。
30. McGrattan, K. B., “Fire Dynamics Simulator (Version 5) Technical Reference Guide,” National Institute of Standards and Technology Special Publication 1018-5, October 2007.
31. Atreya. A., “Pyrolysis, Ignition and Fire Spread on Horizontal Surfaces of Wood,” NBS-GCR-83-449, National Bureau of Standards (now NIST), Gaithersburg, Maryland, 1983. 32. Ritchie, S. J., Steckler, K. D., Hamins, A., Cleary, T. G., Yang, J. C. and Kashiwagi, T., “The Effect of Sample Size on the Heat Release Rate of Charring Materials,” In Fire Safety Science - Proceedings of the
5th International Symposium, International Association For Fire Safety Science, pp. 177-188, March 1997.