| 研究生: |
王令銓 Wang, Ling-Chuan |
|---|---|
| 論文名稱: |
沉積岩地熱模組化與技術經濟 Modularization and Techno-Economic Analysis of Sedimentary Rock Geothermal |
| 指導教授: |
謝秉志
Hsieh, Bieng-Zih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 地熱 、沉積岩 、模組化 、水平井 、技術經濟 |
| 外文關鍵詞: | Geothermal, Sedimentary, Modularization, Horizontal Well, Techno-Economic |
| 相關次數: | 點閱:121 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了減緩地球暖化及因應全球氣候變遷,再生能源的發展成為了各國所追求的目標,舉凡像是太陽能、風能以及地熱等再生能源。而地熱在再生能源之中具有穩定且不受四季、日夜等因素影響之優勢,有成為基載電力能源之潛力。在地熱發電中,沉積岩地熱發電是一項近年來興起的技術,沉積岩相較於變質岩地層而言,普遍地層內溫度較低,因此關鍵在於如何量化沉積岩地層中的地熱潛能,本研究由模組化的概念為基礎,並且計算其技術經濟議題,來評估沉積岩地熱開發之潛力。本研究的主要目的在於透過數值模擬法評估使用水平井工法在沉積岩中進行地熱開發之潛能,在單產單注的產注模式下,透過觀察儲集層內壓力變化以及溫度變化,訂定出合理模組化概念,並以此作為生產條件,在不同的地質條件中,設計可能最大產率,並且以此產率配合合理流體熱度,估算出各案例之電廠裝置容量,並透過此發電效能進一步計算其成本花費以及可能收益,至此完成模組化以及技術經濟計算。本研究結果指出,在進行單產單注的生產模式中,由於注入與抽取的產率相同,因此在兩井的井底流壓變化來看是有相同的變化幅度,且在進行生產時,回注流體所導致的地層壓力上升能夠有效補助生產井抽水所造成的壓力降幅,使整體地層壓力在不變化劇烈的情況下,能保有穩定的每日產率。透過單地質參數變化,分析各案例之產率變化趨勢,藉此評估哪些地質參數對於沉積岩地熱產能來說,有著較大的影響力。結果顯示,儲集層熱度以及儲集層厚度對於沉積岩地熱開發中是影響佔比較多的地質參數。在技術經濟方面,比較直井工法以及水平井工法對於沉積岩地熱開發的效益,在初期投資成本上,由於直井有著較為便宜的進尺費用,因此在投資門檻而言是較為便宜的一項選擇,但是本研究透過三種不同的情境,來模擬直井以及水平井在進行單產單注的產注行為時,結果顯示在相同的生產條件下,即使水平井的初期投資費用較高,但是無論是在淨現值或是能源均化成本上,皆是水平井優於直井,在水平沉積岩地層中,由於厚度會大幅度影響產率,而水平井在水平地層足夠廣大的情況下,能夠有效提升產率,藉此獲得較好產能。是作為沉積岩地熱開發中,良好的工法選擇。
This study aims to assess sedimentary rock geothermal development using horizontal well techniques via numerical simulation. Adopting a single production and injection mode, the research observes reservoir pressure and temperature changes to establish a modularization concept, serving as production conditions. The study designs maximum production rates under diverse geological conditions and estimates power plant capacities based on fluid temperatures. Results indicate similar bottomhole pressures in wells during production and injection, with fluid re-injection maintaining stable daily production rates. Varying a single geological parameter reveals that reservoir temperature and thickness significantly impact sedimentary rock geothermal production. Techno-economic analysis favors horizontal wells over vertical ones in terms of net present value and levelized cost of energy, especially in extensive horizontal formations, making them a preferred choice for sedimentary rock geothermal development.
1. Numbere, D., Brigham, W. E., & Standing, M. B. (1977). Correlations for Physical Properties of petroleum reservoir Brines (No. DOE/ET/12056-T3; SUPRI-TR-1). Stanford Univ., CA (USA). Petroleum Research Inst..
2. GPSA Engineering Data Book, (1980), adapted from Steam Tables, Keenan, J.H., Keyes, F.G., Hill, P.G. and Moore, J.G., John Wiley and Sons, 1969.
3. Ozkan, E., Raghavan, R. A. J. A. G. O. P. A. L., & Joshi, S. D. (1987, April). Horizontal well pressure analysis. In SPE Western Regional Meeting (pp. SPE-16378). SPE.
4. 陳志豪. (2006). TCDP 鑽井岩心之熱參數直接量測與相關物理特性研究.
5. Agemar, T., Alten, J. A., Kühne, K., Maul, A. A., Pester, S., Wirth, W., & Schulz, R. (2007). Development of a geothermal information system for Germany. In Proceedings European Geothermal Congress, Unterhaching, Germany.
6. 謝壎煌. (2007). 單一水平井於河畔取水效益之研究. 自來水會刊第26卷第4期.
7. de Graaf, L., Palmer, R., & Reid, I. (2010). The Limestone coast geothermal project, south Australia: a unique hot sedimentary aquifer development. In Proceedings world geothermal Congress (pp. 1-7).
8. Corbel, S., Griffiths, C., Dyt, C., & Ricard, L. (2012, January). Hot sedimentary aquifer characterization using stratigraphic forward modelling, Perth Basin, Australia. In Proceedings of the thirty-seventh workshop on geothermal reservoir engineering, Stanford University, Stanford, California.
9. Bahadori, A., Zendehboudi, S., & Zahedi, G. (2013). A review of geothermal energy resources in Australia: current status and prospects. Renewable and Sustainable Energy Reviews, 21(0), 29-34.
10. Beckers, K. F., Lukawski, M. Z., Reber, T. J., Anderson, B. J., Moore, M. C., & Tester, J. W. (2013, February). Introducing GEOPHIRES v1. 0: Software package for estimating levelized cost of electricity and/or heat from enhanced geothermal systems. In Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California (Vol. 11).
11. Bendall, B., Huddlestone-holmes, C., & Goldstein, B. (2013, February). The current status of geothermal projects in Australia–a national review. In Proceedings of thirty-eight workshop on geothermal reservoir engineering, Stanford, California, USA.
12. Agemar, T., Weber, J., & Schulz, R. (2014). Deep geothermal energy production in Germany. Energies, 7(7), 4397-4416.
13. Zarrouk, S. J., & Moon, H. (2014). Efficiency of geothermal power plants: A worldwide review. Geothermics, 51, 142-153.
14. Kana, J. D., Djongyang, N., Raïdandi, D., Nouck, P. N., & Dadjé, A. (2015). A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews, 44, 87-95.
15. Olasolo, P., Juárez, M. C., Morales, M. P., & Liarte, I. A. (2016). Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews, 56, 133-144.
16. 台灣中油股份有限公司(2016),探採事業部對外工程服務收費標準
17. Willems, C. J. L., Nick, H. M., Goense, T., & Bruhn, D. F. (2017). The impact of reduction of doublet well spacing on the Net Present Value and the life time of fluvial Hot Sedimentary Aquifer doublets. Geothermics, 68, 54-66.
18. Willems, C. J., Nick, H. M., Donselaar, M. E., Weltje, G. J., & Bruhn, D. F. (2017). On the connectivity anisotropy in fluvial Hot Sedimentary Aquifers and its influence on geothermal doublet performance. Geothermics, 65, 222-233.
19. Alshereef, A. S. (2017). Technology assessment model of developing geothermal energy resources for supporting electrical system: the case for Oregon (Doctoral dissertation, Portland State University).
20. Wang, W. (2017) Analysis of Genetic Model of Igneous Rock Reservoir in Pai 66 Block of Chunfeng Oilfield. Journal of Southwest Petroleum University (Natural Science Edition), 39, 25-33.
21. Beckers, K. F., & McCabe, K. (2019). GEOPHIRES v2. 0: updated geothermal techno-economic simulation tool. Geothermal Energy, 7(1), 1-28.
22. Zhang, Q., Chen, S., Tan, Z., Zhang, T., & Mclellan, B. (2019). Investment strategy of hydrothermal geothermal heating in China under policy, technology and geology uncertainties. Journal of cleaner production, 207, 17-29.
23. Ballesteros, M., Pujol, M., Aymard, D., & Marshall, R. (2020). Hot sedimentary aquifer geothermal resource potential of the Early Permian Kingia Sandstone, North Perth Basin, Western Australia. GRC Transactions, 44, 477-503.
24. Groenewoud, L., & Marcia, K. (2020). The DEEP Geothermal Power Project: Wildcat Drilling For The Earth’s Heat, Williston Sedimentary Basin (Canada). GRC Transactions, 44.
25. Ciriaco, A. E., Zarrouk, S. J., & Zakeri, G. (2020). Geothermal resource and reserve assessment methodology: Overview, analysis and future directions. Renewable and Sustainable Energy Reviews, 119, 109515.
26. Kamila, Z., Kaya, E., & Zarrouk, S. J. (2021). Reinjection in geothermal fields: An updated worldwide review 2020. Geothermics, 89, 101970.
27. Zhang, S., Jiang, Z., Zhang, S., Zhang, Q., & Feng, G. (2021). Well placement optimization for large-scale geothermal energy exploitation considering nature hydro-thermal processes in the Gonghe Basin, China. Journal of Cleaner Production, 317, 128391.
28. Adams, B., Ogland-Hand, J., Bielicki, J. M., Schädle, P., & Saar, M. (2021). Estimating the geothermal electricity generation potential of sedimentary basins using genGEO (the generalizable GEOthermal techno-economic simulator).
29. Tester, J. W., Beckers, K. F., Hawkins, A. J., & Lukawski, M. Z. (2021). The evolving role of geothermal energy for decarbonizing the United States. Energy & Environmental Science, 14(12), 6211-6241.
30. CMG. (2021). User’s Guide: STARS Thermal & Advanced Precesses Simulator.
31. Malek, A. E., Adams, B. M., Rossi, E., Schiegg, H. O., & Saar, M. O. (2022). Techno-economic analysis of advanced geothermal systems (AGS). Renewable Energy, 186, 927-943.