簡易檢索 / 詳目顯示

研究生: 陳得法
Tan, Tech Fatt
論文名稱: 以基於協合應力偶理論之尺度相關有限元素法進行功能性石墨烯片加勁複合材料圓柱微米殼三維自由振動分析
A Size-Dependent Finite Element Method for the 3D Free Vibration Analysis of Functionally Graded Graphene Platelets-Reinforced Composite Cylindrical Microshells Based on the Consistent Couple Stress Theory
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 62
中文關鍵詞: 協合應力偶理論有限元素法自由振動功能性圓柱微殼石墨烯片三維分析
外文關鍵詞: Consistent couple stress theory, Finite element method, Free vibration, Functionally graded cy-lindrical shells, Graphene platelets, 3D analysis
相關次數: 點閱:130下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究基於協合應力偶理論(Consistent Couple Stress Theory, CCST)架構之下,發展尺寸效應相關之有限元素方法(Finite Element Method, FEM)。研究重點在於探討簡支功能性(Functionally Graded, FG)石墨烯片(Graphene Platelets, GPLs)加勁複合材料(GPL-Reinforced Composite, GPLRC)圓柱微米殼的三維自由振動特性。在理論推衍中,圓柱微米殼被人為地劃分為許多有限數目的微米尺度層,以進行深入分析。透過傅立葉函數與Hermitian C2多項式,本研究實現了內外表面位移變化的精確插值,確保每一微層在節點表面位移分量的二階導數連續性。研究中考慮了GPLs在厚度方向上的五種分佈形式,包括均勻分佈(Uniform Distribution, UD)及功能性的A型、O型、V型和X型分佈。在材料尺度參數設為零的前提下,透過與現有文獻中相關的FG圓柱形宏觀殼的三維近似解進行比較,驗證了本CCST的FEM在準確性及收斂性方面的效力。數值結果顯示,增加GPLs的重量比例1%,可使FG-GPLRC圓柱微米殼的自然頻率提高至超過均質圓柱微米殼的兩倍。此外,材料尺度參數、GPL分佈形式及GPL的長度與厚度比例對FG-GPLRC圓柱微米殼的自然頻率均產生顯著影響。因此,本研究可以作為評估FG圓柱微米殼各種二維尺寸相關剪切變形理論的準確性參考。

    Within a framework of the consistent couple stress theory (CCST), a size-dependent finite element method (FEM) is developed. The three-dimensional (3D) free vibration characteristics of simply-supported, functionally graded (FG) graphene platelets (GPLs)-reinforced composite (GPLRC) cylindrical microshells are analyzed. In the formulation, the microshells are artificially divided into numerous finite microlayers. Fourier functions and Hermitian C2 polynomials are used to interpolate the in-surface and out-of-surface variations in the displacement components induced in each microlayer. As a result, the second-order derivative continuity conditions for the displacement components at each nodal surface are satisfied. Five distribution patterns of GPLs varying in the thickness direction are considered, including uniform distribution (UD) and FG A-type, O-type, V-type, and X-type distributions. The accuracy and convergence of the CCST-based FEM are validated by comparing the solutions it produces with the exact and approximate 3D solutions for FG cylindrical macroshells reported in the literature, for which the material length scale parameter is set at zero. Numerical results show that by increasing the weight fraction of GPLs by 1%, the natural frequency of FG-GPLRC cylindrical microshells can be increased to more than twice that of the homogeneous cylindrical microshells. In addition, the effects of the material length scale parameter, the GPL distribution patterns, and the length-to-thickness ratio of GPLs on natural frequencies of the FG-GPLRC cylindrical microshells are significant.

    摘要 I Extend Abstract II 誌謝 V 目錄 VI 表目錄 VII 圖目錄 VIII 變數符號參考表 X 第一章 緒論 1 第二章 以CCST為理論基礎的半解析有限元素法 5 2.1有效材料性質 5 2.2 三維CCST 7 2.3 運動學假設 7 2.4 Hamilton定理 11 2.5 Hermitian C2的有限元素法 12 第三章 數值範例 15 3.1 均質等向性之單壁奈米碳管 15 3.2 FG圓柱形宏觀殼 16 3.3 多層GPLRC圓柱微米殼 17 3.4 FG-GPLRC圓柱微米殼 19 第四章 結論 23 第五章 參考資料 25 附錄A 32 附錄B 33

    [1] Iijima, S. Helical microtubults of graphitic carbon. Nature 1991, 354, 56058.
    [2] Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
    [3] Esashi, M. Micro/nano electro mechanical systems for practical applications. J. Phys. 2009, 187, 012001.
    [4] Young, R.J.; Kinloch, I.A.; Gong, I.; Novoselov, K.S. The mechanics of graphene nanocomposites: A review. Compos. Sci. Technol. 2012, 72, 1459-1476.
    [5] Raflee, M.A.; Raflee, J.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884-3890.
    [6] Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624-1652.
    [7] Esaw, A.M.K.; Farag, M.M. Carbon nanotube reinforced composites: Potential and current challenges. Mater. Des. 2007, 28, 2394-2401.
    [8] Zhao, S.; Zhao, Z.; Yang, Z.; Ke, L.; Kitipornchai, S.; Yang, J. Functionally graded graphene reinforced composite structures: A review. Eng. Struct. 2020, 210, 110339.
    [9] Ma, Q.; Clarke, D.R. Size dependent hardness of silver single crystals. J. Mater. Res. 1995, 10, 853-863.
    [10] Chong, A.C.M.; Lam, D.C.C. Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 1999, 14, 4103-4110.
    [11] Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 2013, 51, 1477-1508.
    [12] Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703-10.
    [13] Eringen, A.C. Nonlocal Continuum Field Theories. Springer-Verlag, New York, NY, 2002.
    [14] Wu, C.P.; Yu, J.J. A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory. Arch. Appl. Mech. 2019, 89, 1761-1792.
    [15] Wu, C.P.; Hu, H.X. A review of dynamic analyses of single- and multi-layered graphene sheets/nanoplates using various nonlocal continuum mechanics-based plate theories. Acta Mech. 2021, 232, 4497-4531.
    [16] Eringen, A.C. Theory of micropolar elasticity, 101-248. In: Microcontinuum Field Theories. Springer-Verlag, New York, NY, 1999.
    [17] Mindlin, R.D. Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1965, 1, 417-438.
    [18] Mindlin RD, Eshel NN. On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 1968, 4, 109-24.
    [19] Mindlin, R.D.; Tiersten, H.F. Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 1962, 11, 415-488.
    [20] Eringen, A.C. Theory of micropolar elasticity, 621-729. In: Fracture. Academic Press, New York, NY, 1968.
    [21] Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P. Couple stress-based strain gradient theory for elasticity. Int. J. Solids Struct. 2002, 39, 2731-2743.
    [22] Hadjesfandiari, A.R.; Dargush, G.F. Couple stress theory for solids. Int. J. Solids Struct. 2011, 48, 2496-2510.
    [23] Hadjesfandiari, A.R.; Dargush, G.F. Fundamental solutions for isotropic size-dependent couple stress elasticity. Int. J. Solids Struct. 2013, 50, 1253-1265.
    [24] Tang, F.; He, S.; Shi, S.; Xue, S.; Dong, F.; Liu, S. Analysis of size-dependent linear static bending, buckling, and free vibration based on a modified couple stress theory. Materials, 2022, 15, 7583.
    [25] Mehralian, F.; Beni, Y,T. Thermo-electro-mechanical buckling analysis of cylindrical nanoshell on the basis of modified couple stress theory. J. Mech. Sci. Technol. 2017, 31, 1773-1787.
    [26] Zeighampour, H.; Beni, Y.T. Analysis of conical shells in the framework of coupled stresses theory. Int. J. Eng. Sci. 2014, 81, 107-122.
    [27] Liu, Y.; Wang, Y. Size-dependent free vibration and buckling of three-dimensional graphene foam microshells based on modified couple stress theory. Materials, 2019, 12, 729.
    [28] Soleimani, I.; Beni, Y.T.; Dehkordi, M.B. Size-dependent two-node axisymmetric shell element for buckling analysis with couple stress theory. Proc. IMechE Part C: J. Mech. Eng. Sci. 2019, 233, 4729-4741.
    [29] Salehipour, H.; Shahsavar, A.; Civalek, . Free vibration and static deflection analysis of functionally graded and porous micro/nanoshells with clamped and simply supported edges. Compos. Struct. 2019, 221, 110842.
    [30] Zeighampour, H.; Beni, Y.T. A shear deformable cylindrical shell model based on couple stress theory. Arch. Appl. Mech. 2015, 85, 539-553.
    [31] Esfahani, M.N.; Hashemian, M.; Aghadavoudi, F. The vibration study of a sandwich conical shell with a saturated FGP core. Sci. Reports 2022, 12, 4950.
    [32] Shameli, R.; Aghadavoudi, F.; Hashemian, M. Free torsional vibration analysis of nanorods with non-circular cross-sections based on the second-order strain gradient theory. J. Vibr. Eng. Technol. 2022, DOI:10.1007/s42417-022-00729-z.
    [33] Lyu, Z.; Liu, W.; Liu, C.; Zhang, Y.; Fang, M. Thermo-electro-mechanical vibration and buckling analysis of a functionally graded piezoelectric porous cylindrical microshell. J. Mech. Sci. Technol. 2021, 35, 4655-4672.
    [34] Thai, S.; Thai, H.T.; Vo, T.P.; Reddy, J.N. Post-buckling of functionally graded microplates under mechanical and thermal loads using isogeometric analysis. Eng. Struct. 2017, 150, 905-917.
    [35] Thai, S.; Thai, H.; Vo, T.P.; Nguyen-Xuan, H. Nonlinear static and transient isogeometric analysis of functionally graded microplates based on the modified strain gradient theory. Eng. Struct. 2017, 153, 598-612.
    [36] Nguyen, H.X.; Atroshchenko, E.; Ngo, T.; Nguyen-Xuan, H.; Vo, T.P. Vibration of cracked functionally graded microplates by the strain gradient theory and extended isogeometric analysis. Eng. Struct. 2019, 187, 251-266.
    [37] Wang, Y.Q.; Liu, Y.F.; Zu, J.W. Size-dependent vibration of circular cylindrical polymetric microshells reinforced with graphene platelets. Int. J. Appl. Mech. 2019, 11, 1950036.
    [38] Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Boca Raton, CRC Press, 2003.
    [39] Baghbadorani, A.A.; Kiani, Y. Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets. Compos. Struct. 2021, 276, 114546.
    [40] Safarpour, H.; Hajilak, Z.E.; Habibi, M. A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures resting on elastic foundation. Int. J. Mech. Mater. Des. 2019, 15, 569-583.
    [41] Salehi, M.; Gholami, R.; Ansari, R. Analytical solution approach for nonlinear vibration of shear deformable imperfect FG-GPLR porous nanocomposite cylindrical shells. Mech. Based Des. Struct. Mach. 2021, DOI:10.1080/15397734.2021.1891096.
    [42] Wang, Y.; Fu, T.; Zhang, W. An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: Applications to dynamic stability analysis. Thin-Walled Struct. 2021, 160, 107400.
    [43] Moayedi, H.; Aliakbarlou, H.; Jebeli, M.; Noormohammadi-Arani, O.; Habibi, M.; Safapour, H.; Foong, I.K. Thermal buckling responses of a graphene reinforced composite micropanel structure. Int. J. Appl. Mech. 2020, 12, 2050010.
    [44] Wu, C.P.; Hsu, C.H. A three-dimensional weak formulation for stress, deformation, and free vibration analyses of functionally graded microplates based on the consistent couple stress theory. Compos. Struct. 2022, 296, 115829.
    [45] Wu, C.P.; Lu, Y.A. A Hermite-family C1 finite layer method for the three-dimensional free vibration of exponentially graded piezoelectric microplates based on the consistent couple stress theory. Int. J. Struct. Stab. Dyn. 2023, 23, 2350044.
    [46] Yang, J.; Wu, H.; Kitipornchai, S. Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 2017, 161, 111-118.
    [47] Zeighampour, H.; Beni, Y.T. Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 2014, 78, 27-47.
    [48] Loy, C.T.; Lam, K.Y.; Reddy, J.N. Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 1999, 41, 309-324.
    [49] Liu, D.; Kitipornchai, S.; Chen, W.; Yang, J. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded reinforced composite cylindrical shell. Compos. Struct. 2018, 189, 560-569.
    [50] Song, M.; Kitipornchai, S.; Yang, J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 2017, 159, 579-588.
    [51] Song, M.; Yang, J.; Kitipornchai, S. Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Part B 2018, 134, 106-113.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE