| 研究生: |
林怡君 Lin, Yi-Chun |
|---|---|
| 論文名稱: |
網格運算環境工作間有相互關聯之工作分派問題探討-使用粒子群優化演算法 The Study of Task Assignment Problem Using Particle Swarm Optimization in Grid Environment |
| 指導教授: |
黃悅民
Huang, Yueh-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 粒子演算法 、最佳化 、網格運算 、工作分配 |
| 外文關鍵詞: | Particle swarm optimization, optimization, grid computing, task assignment |
| 相關次數: | 點閱:182 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
網格排程問題是一種協商組合性之問題,當某些工作被指派至一網格式的分散式系統時,彼此間具有關聯性的工作必需與其它不同的分散系統作資訊交換的動作。本研究分別提出連續型粒子群優化演算法及二元型粒子群優化演算法以解決網格排程問題及探討相關參數對解之影響。
本研究之目的在於希望能最小化網格環境中之網格運算之最大成本,其成本包含運算成本與通訊成本,模擬之結果顯示本研究所提出的演算法確實能解決網格排程問題。
The grid scheduling problem is concerned with some tasks assigning to a grid distributed system that the relative tasks have to exchange information on different grids. This theses presents a particle swarm optimization(PSO)and a discrete particle swarm optimization (DPSO) to solve the grid scheduling problems. The objective is to minimize the maximum cost of the Grid, which includes computing cost and communicate cost. Simulation results show that the grid scheduling problem can be solved efficiently by the proposed method. Meanwhile some factors which are not important in PSO, are also demonstrated in this work.
英文文獻
[1] Alpdemir, M. N., Mukherjee, A., Paton, N. W., Watson, P., Fernandes, A. A. A., Gounaris, A., and Smith, J.,“Service-Based Distributed Querying on the Grid,"in Proceedings of the 1st International Conference on Service-Oriented Computing, pp.467-482. , 2003
[2] Ali, A., Anjum, A., Azim, T., Bunn, J. J., Mehmood, A., McClatchey, R., Newman, H. B., Rehman, W., Steenberg, C., Thomas, M., Lingen, F., Willers, I., and Zafar, M. A., “Resource Management Services for a Grid Analysis Environment,"Proc. 34th International Conference on Parallel Processing Workshops, pp.53-60. , 2005
[3] Bandura, A., “Social Learning Theory. Englewood Cliffs”, N.J., Prentice-Hall, pp.22,1977
[4] Boyd, R. and Richerson, P. J., “Culture and the Evolutionary Process” the University of Chicago Press, Chicago, 1985.
[5] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., and Tuecke, S., “The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific Datasets,"Journal of Network and Computer Applications, pp.187-200. , 2000
[6] Cao, J., S. Jarvis, A. and Saini, S.,“ARMS: An Agent-Based Resource Management System for Grid Computing,"Scientific Programming, pp.135-148. , 2002
[7] Cannataro, M. and Comito, C.,“A Data Mining Ontology for Grid Programming,"in the 1st International Workshop on Semantics in Peer-to-Peer and Grid Computing, pp.113-134. , 2003
[8] Cannataro, M. and Talia, D.,“Knowledge Grid: An Architecture for Distributed Knowledge Discovery,"Communication of ACM, pp.89-93. , 2003
[9] Eberhart, R. C. and Kennedy, J. ,“Particle Swarm Optimization”, Vol. IV, Proceedings of IEEE Interna-tional Conference on Neural Networks, pp.1942-1948. , 1995,
[10] Eberhart, R. C. and Kennedy, J. “A New Optimizer Using Particle Swarm Theory”, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE Service Cen-ter, Piscataway, NJ, Nagoya, Japan, 1995, pp. 39-43.
[11] Eberhart, R. C. and Y. Shi, “ Comparison between genetic algorithms and particle swarm optimization.” Annual Conference on Evolutionary Programming, SanDiego, CA, 1998
[12] Foster I. and Kesselman C.,“The Grid: Blueprint for a New Computing Infrastructure."Morgan Kaufmann, San Francisco, CA, 1999.
[13] Hu, X., Shi, Y., and Eberhart, R.C., “Recent advances in particle swarm”, Proceedings of IEEE Congress on Evolutionary Computation , pp. 90-97. , 2004
[14] Lee, L.T., Tao, D.F., Tsao, C.: An adaptive scheme for predicting the usage of grid resources. Computers & Electrical Engineering., pp.1-11. ,2007
[15] Natarajan, R., Sion, R., Apte, C., and Narang, I. S.,“A Grid-Based Approach for Enterprise-Scale Data Mining,"in Workshop on Data Mining and the Grid at the 4th IEEE International Conference on Data Mining, pp.1-8. , 2004
[16] Reynolds, C. “Flocks, Herds and Schools: A Distributed Behavioral Model” , Vol. 21, Computer Graphics, pp. 25-34. , 1987
[17] Rahman, R. M., Barker, K., and Alhajj, R.,“Replica Selection in Grid Environment: A Data-Mining Approach,"in Proceedings of the 2005 ACM Symposium on Applied Computing, pp.695-700. , 2005
[18] Shi, Y., and Eberhart, R. C., “Parameter Selection in Particle Swarm Optimization,” V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, pp. 591−600, 1998
[19] Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for task assignment problem. Microprocessors and Microsystems., pp.363-371 , 2002
[20] Shi, Y., “Particle Swarm Optimization”, Proceedings of Electronic Data Systems, Kokomo, IN 46902, USA.,2004
[21] Swany, M. and Wolski, R.,“Building Performance Topologies for Computational Grids,"International Journal of High Performance Computing Applications, pp.255-265. , 2004
[22] Thorndike, E. L., “Animal intelligence: An experimental study of the associative processes in animals” Psychological Review Mdddh Supplement, pp.1-109. ,1898
[23] Wang C.M., Chen M., Chang C.C., and Wu J.J.,“A High-Performance Virtual Storage System for Taiwan UniGrid,"Proceedings of the Third Workshop on Grid Technologies and Applications, pp. 7-8. ,2006
[24] Yang C.T., Chen S.Y., Chen T.T., Yeh Y.C. and Chen C.Y., “Design and Implementation of Monitoring and Information Services Using Ganglia and NWS for Grid Resource Broker."Proceedings of the Third Workshop on Grid Technologies and Applications, pp. 7-8. , 2000
中文文獻
[25] 林誠謙、李世昌、鄧炳坤,下一代網際網路新紀元-全球網格(World Wide Grid),自然科學簡訊,Vol.15,No.4,pp. 123-124,2003
[26] 馬慧民、吳勇、叶春民,車輛路徑問題的並行粒子群算法研究,上海理工大學學報,2007
[27] 謝昆霖、沈進成、周君妍、鄭丞君,基因演算法應用於顧客旅遊行程路徑最適化模式之研究,南華大學旅遊事業管理研究所,2005
[28] 顏上堯、李旺蒼、施佑林,路徑基礎類粒子群最佳化演算法於求解含凹形節線成本最小成本轉運問題之研究,國立中央大學土木工程學系,2007