| 研究生: |
鄧丞宏 Deng, Chen-Hung |
|---|---|
| 論文名稱: |
IC封裝模具表面氧化處理對於EMC間黏著效應之影響 EMC Adhesion Effects on Oxidation of IC Encapsulation Mold Surface |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | IC封裝 、黏著效應 、黏模力特性曲線 、模穴圓角 、預氧化處理 |
| 外文關鍵詞: | IC package, Adhesion effects, Characteristic curve, Corner effect, Pre-Oxidation treatment |
| 相關次數: | 點閱:122 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電子IC封裝製程中,封膠材料(Epoxy Molding Compound, EMC)在熟化(Curing)成型的過程中與封裝模具表面產生黏著的現象,稱之為黏著效應(Adhesion effects)。而此黏著效應過大時,則會影響IC成品在脫模作業過程中產生表面破壞,進而導致封膠失敗、生產效率降低與可靠度(Reliability)不佳等結果,因此如何利用特殊的表面處理(Surface treatment)、鍍層(Coating)以及熱處理(Heat treatment)的選擇來有效的降低因黏著效應在模具表面及試片表面所產生的黏模力(Adhesion force)是目前產業界及研究單位所重視的主題。
本研究室利用本實驗室自行研究完成的自動化電子封裝黏模力檢測設備與量測技術,在過往本實驗室的研究中,量測試片的表面鍍層皆未經由預氧化處理(Pre-Oxidation treatment),在本研究中將試片做完鍍層之後,會經由預氧化處理在不同溫度時所產生的表面氧化物以及在試片增加模穴設計後對於封膠材料黏著效應影響。本研究也將會在不同的封裝模具進行放電加工(Electrical discharge machining, EDM)與噴砂(Sandblasting)處理二種不同的表面處理配合不一樣的鍍層中再經預氧化處理後是否產生不一樣的表面氧化物以減少黏著效的的產生,進行一系列的黏模力測試。
最後,本論文也針對不同溫度的預氧化處理進行四百模次的長效性連續實驗,觀察黏模力的變化趨勢,透過線性迴歸分析(Linear regression)將實驗數據擬合出一條黏模力特性曲線(Characteristic curve),分別將每組實驗所擬合出的特性曲線進行比對,了解在不同溫度下的預氧化處理所產生的表面氧化物對於封膠材料的黏著影響程度,用以判斷出最佳的清模時機,以及是否減少因黏著效應所產生的不良影響。
During the process of electronic IC packaging, epoxy molding compound (EMC, hereafter) in the curing process will produce the adhesive phenomenon on the surface of packaging molds called adhesion effects. If the degree of adhesion effect is too high, it will destroy the surface of IC products which are during the stripping operations and further lead to the failure of molding, low efficiency of production and low reliability of the result etc..
Therefore, the current issues that industrial fields and researchers concern about are how to utilize the special surface treatment, coating and heat treatment to effectively reduce adhesion force resulted from adhesion effects on the surface of molds and of specimens. This research uses the testing equipment of adhesion force on automatically electronic packaging and measuring technology both created by our laboratory. Based on the previous studies, the coating surface of tested specimens has not been under pre-oxidation treatment. Therefore, this research will add pre-oxidation treatment to the plated specimens to investigate the oxide created at different temperatures. Additionally, it is going to find out the effects of adhesion effects on the tested specimens with corner design. Furthermore, this study will conduct electrical discharge machining and sandblasting on different packaging molds and then to see whether these two types of coating surface produce different oxides. Besides, it will execute the series testing of adhesion force to view the oxide which will reduce adhesion effects. In the end, this research also carries out the continuous experiments on pre-oxidation treatment for 400 shots to observe the changing trend of adhesion force. Through the analysis of linear regression, the experimental data will result in a characteristic curve of adhesion force and then the researcher will compare the characteristic curve of each experiment to understand the degree to which the oxide produced by pre-oxidation treatment affects the adhesion on molding materials. Therefore, the results are able to judge the best mold clean time and to see whether the influence caused by adhesion effects was reduced or not.
[1] A. C. Loos and G. S. Springer, “Curing of Epoxy Matrix Composites,” Journal of Composite Materials, Vol. 17, No. 2, pp. 135-169, 1983.
[2] G. S. Springer, “Resin Flow During the Cure of Fiber Reinforced Composites,” Journal of Composite Materials, Vol. 16, No. 5, pp. 400-410, 1982.
[3] U. F. González, S. F. Shen, and Claude Cohen, “Rheological Characterization of Fast-Reacting Thermosets Through Spiral Flow Experiments,” Polymer Engineering and Science, Vol. 32, No. 3, pp. 172-181, 1992.
[4] R. L. Frutiger, “The Effect of Flow on Cavity Surface Temperatures in Thermoset and Thermoplastic Injection Molding,” Polymer Engineering and Science, Vol.26, No. 3, pp. 243-254, 1986.
[5] C. C. Lee and C. L. Tucker III, “Flow and Heat Transfer in Compression Mold Filling,” Journal of Non-Newtonian Fluid Mechanics, Vol. 24, No. 3, pp. 245-264, 1987.
[6] D. R. Edwards, K. G. Heinen, S. K. Groothuis, and J. E. Martinez, “ Shear Stress Evaluation of Plastic Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, No. 4, pp. 618-627, 1987.
[7] S. Kim, “The Role of Plastic Package Adhesion in Performance,” IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Vol. 14, No. 4, pp. 809-295, 1991.
[8] M. Ko, M. Kim, D. Shin, Y. Park, M. Moon, and I. Lim, “Investigation on the Effect of Molding Compounds on Package Delamination,” Electronic Components and Technology Conference, pp. 1242-1247, San Jose, California, 1997.
[9] N. Tanaka, M. Kitano, T. Kumazawa, and A. Nishimura, “Evaluating IC-Package Interface Delamination by Considering Moisture-Induced Molding-Compound Swelling,” IEEE Transaction on Components and Packaging Technology, Vol. 22, No. 3, pp. 426-432, 1999.
[10] T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin, and E. Andideh, “Interfacial Adhesion of Copper-Low k Interconnects,” IEEE Interconnect Technology Conference, pp. 257–259, Burlingame, California, 2001.
[11] R. Balkova, S. Holcnerova, and V. Cech, “Testing of Adhesion for Bonding of Polymer Composites,” International Journal of Adhesion and Adhesives, Vol. 22, No. 4, pp. 291-295, 2002.
[12] T. L. Gordon and M. E. Fakley, “The Influence of Elastic Modulus on Adhesion to Thermoplastics and Thermoset Materials,” International Journal of Adhesion and Adhesives, Vol. 23, No. 2, pp. 95-100, 2003.
[13] S. Murray, C. Hillman, and M. Pecht, “Environmental Aging and Deadhesion of Siloxane-Polyimide-Epoxy Adhesive,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 3, pp. 524-531, 2003.
[14] K. Uehara and M. Sakurai, “Bonding Strength of Adhesives and Surface Roughness of Joined Parts,” Journal of Materials Processing Technology, Vol. 127, No. 2, pp. 178-181, 2002.
[15] S. Zhang, X. Zeng, Z. Tang, and M. Jen Tan, “Exploring the Antisticking Properties of Solid Lubricant Thin Films in Transfer Molding,” International Journal of Modern Physics B, Vol. 16, Nos. 6&7, pp. 1080-1085, 2002.
[16] S. M. Chiu, S. J. Hwang, C. W. Chu, and D. Gan, “The Influence of Cr-based Coating on the Adhesion Force Between Epoxy Molding Compounds and IC Encapsulation Mold,” Thin Solid Films, Vol. 515, No. 1, pp. 285-292, 2006.
[17] P. Navabpour, D. G. Teer, D. J. Hitt, and M. Gilbert, “Evaluation of Non-stick Properties of Magnetron-sputtered Coatings for Moulds Used for the Processing of Polymers,” Surface and Coatings Technology, Vol. 201, No. 6, pp. 3802-3809, 2006.
[18] Y. Y. Hsieh, H. T. Hsu, M. T. Lin, Y. S. Lai, and S. H. Chen, “A Study of Self-assembled Monolayer Coating for Non-stick Encapsulation Mold,” International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, pp. 181-183, 2007.
[19] 張祥傑,微材料測試系統之設計與製作,碩士論文,國立成功大學機械工程研究所,1999年。
[20] 王俊祥,電子封裝黏模效應之量測技術開發與研究,碩士論文,國立成功大學機械工程研究所,2000年。
[21] 莊俊華,IC構裝黏模測試機之設計與製造,碩士論文,國立成功大學工程科學研究所,2001年。
[22] 朱言主,IC封裝模具黏著效應之研究,碩士論文,國立成功大學工程科學研究所,2002年。
[23] M. Yoshii, Y. Mizukami, and H. Shoji, “Evaluation Technologies on Moldability of Epoxy Molding Compounds for Encapsulation of Semiconductors,” Hitachi Chemical Technical Report, No. 40, pp. 13-20, 2003.
[24] S. J. Chang and S. J. Hwang, “Design and Fabrication of an IC Encapsulation Mold Adhesion Force Tester,” IEEE Transaction on Electronics Packaging Manufacturing, Vol. 26, No. 4, pp. 281-285, 2003.
[25] 林俊宏,EMC與金屬介面剪向黏著力試驗機台之研發,碩士論文,國立成功大學工程科學研究所,2003年。
[26] 黃勁華,EMC與金屬介面剪向黏著力試驗機台之設計與改良,碩士論文,國立成功大學工程科學研究所,2004年。
[27] 張祥傑,IC封裝黏模力之量測與分析,博士論文,國立成功大學機械工程研究所,2004年。
[28] 李文宏,IC封裝材料對模具及剪向黏著力量之研究,碩士論文,國立成功大學工程科學研究所,2005年。
[29] 陳暉長,電子封裝模具以黏著力作為設計參數之可行性研究,碩士論文,國立成功大學工程科學研究所,2006年。
[30] 楊昌明,表面清洗對電子封裝材料和模具間黏著力的影響,碩士論文,國立成功大學工程科學研究所,2007年。
[31] 黃昭霖,剪向與黏著力測試機模具之設計與研究,碩士論文,國立成功大學工程科學研究所,2008年。
[32] 宋政宏,IC封裝連續成形之黏模力特性研究,碩士論文,國立成功大學工程科學研究所,2009年。
[33] 徐善宥,IC封裝模具表面噴砂處理與放電加工處理對於EMC間黏著效應研究,碩士論文,國立成功大學工程科學研究所,2010年。
[34] 葉佳循,IC封裝模穴圓角對於EMC間黏著效應的影響,碩士論文,國立成功大學工程科學研究所,2011年。
[35] “Test Method for Measurement of Adhesive Strength Between Leadframes and Molding Compounds,” STD. SEMI G69-0996, 1996.
[36] “Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading,” STD. ASTM D1002-94.
[37] “Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds,” STD. ASTM D1062-96.
[38] “Standard Test Method for Tensile Properties of Adhesive Bonds,” STD. ASTM D897-95a.
[39] “Standard Test Method for Strength Properties of Metal-to-Metal Adhesives by Compression Loading (Disk Shear),” STD. ASTM D2182-72.
[40] “Standard Recommended Practice for Determining the Strength of Adhesively Bonded Plastic Lap-Shear Sandwich Joint in Shear by Tension Loading,” STD. ASTM D3164-73.
[41] B. A. Chapman, H. D. DeFord, G. P. Wirtz, and S. D. Brown, in: Technology of Glass, Ceramic, or Glass-Ceramic to Metal Sealing, W. E. Moddeman, C. W. Merten, and D. P. Kramer (Eds.), MD-Vol. 4, pp. 77-87, American Society of Mechanical Engineers, New York, Copyright 1987.