| 研究生: |
許峻維 Syu, Jyun-Wei |
|---|---|
| 論文名稱: |
石英長晶坩堝耐高溫防沾黏抗侵蝕矽酸鋇及氮化硼塗層製程開發 Process Development for High Temperature Non-wetting Anticorrosion Barium Silicate and Boron Nitride Coating on Quartz Crucibles for Silicon Crystal Growth |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 氮化硼 、熱擴散製程 、矽酸鋇 、浸塗製程 、矽長晶坩堝塗層 |
| 外文關鍵詞: | Boron nitride, thermal diffusion process, barium silicate, dip coating process, coating on quartz crucibles for silicon crystal growth |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題為石英長晶坩堝耐高溫防沾黏抗侵蝕矽酸鋇及氮化硼塗層製程開發。氮化硼具有耐高溫、防沾黏、抗侵蝕、潤滑等特性,故氮化硼為優先考量之保護層材料;另一方面,有專利提及矽酸鋇塗層對於石英轉換成方石英具有抑制之效果,並提及可應用於矽長晶坩堝塗層,故矽酸鋇塗層也為一值得考慮的材料。因兩種材料之探討,本研究共分為兩部分:第一部分即利用熱擴散製程生長氮化硼塗層於石英基材上,反應物採用尿素、硼酸當作原料,其最佳操作條件為尿素比硼酸為3比1,於氮氣氣氛下操作溫度900°C持溫16小時並升溫至1250°C持溫1小時,生成之鍍層氧含量約9%,推測氧存在原因為硼酸與尿素反應形成BN後所帶有的OH基,或者仍有微量氧化硼生成,但塗層仍非連續貌,且附著度僅為ASTM D3359附著度測試中之2B等級。另外將此組配方升溫至1400°C持溫1小時於氮氣氣氛下進行測試,其表面形貌則出現許多裂縫及高低差情形,即方石英所產生之巨大體積效應,故可確認氮化硼塗層並無法抑制方石英產生巨大體積效應;因在氮化硼塗層方面,已確認氮化硼不具有抑制方石英產生巨大體積效應之效果,故塗層設計改變為先生成矽酸鋇再生成氮化硼之構想,此即為本研究之第二部分,即利用浸塗製程生長矽酸鋇塗層於石英基材上做為第一層塗層,使其能抑制方石英產生巨大體積效應,而第二層塗層即為氮化硼塗層,使氮化硼生長於矽酸鋇塗層上,其矽酸鋇塗層採用氫氧化鋇、去離子水配置溶液並利用浸塗製程生長矽酸鋇塗層於石英基材上。吾人先進行空白實驗,即將未有塗層之石英基材升溫至1400°C持溫1小時,由GIR檢驗確認有方石英生成,使用SEM/TOPO檢驗則發現具有裂縫及高低差之形貌,可斷定為石英轉變方石英所造成之巨大體積效應所導致,且附著度僅為ASTM D3359附著度測試中之1B等級。而將浸塗5次所生長之矽酸鋇塗層升溫至1400°C且持溫1小時熱處理後,經由GIR檢驗確認仍有方石英生成,但SEM/TOPO檢驗可發現僅形成裂縫,並無高低差之形貌,可確認矽酸鋇塗層能抑制方石英生成時所產生之巨大體積效應,且附著度達ASTM D3359附著度測試中之5B等級,故能防止方石英結晶層剝落之情況,因此經由浸塗5次所生長之矽酸鋇即可列為後續進行生長第二層塗層之配方。
The research topic of thesis is Process Development for High Temperature Non-wetting Anticorrosion Barium Silicate and Boron Nitride Coating on Quartz Crucibles for Silicon Crystal Growth. The boron nitride coating is a top priority material for protection layer because boron nitride has a great properties of high temperature resistance, anti-corrosion, non-wetting, lubrication and so on. On the other hand, it was found that barium silicate coating can inhibit the situation which is formation of cristobalite and be applied for coating on quartz crucibles of silicon crystal growth in the patents. So the barium silicate coating can be considered. The research is divided into two part because the research investigates for two types of materials. The first part is that grows h-BN layer on the quartz via thermal diffusion method and urea, boric acid are used as the reactant. The optimum operating condition is that the ratio of urea and boric oxide is three to one and the operating temperature is heated up to 900°C for 16 hours and than heated up to 1250°C for 1 hour by nitrogen gas flow. The oxygen of coating amount decreased to 9%. It’s speculated that the existence of oxygen is the OH group by the reaction of boric acid with urea to boron nitride , or boron oxide is a little formed in the process. However, the coating isn’t uniform and the adhesion test of ASTM D3359 is only 2B. In addition, the sample of optimum operating condition was heated up to 1400°C for 1 hour by nitrogen gas flow to test. There were many cracks and high and low level morphology of the surface that is the phenomenon which is huge volume effect of cristobalite formation. Therefore, it can be determined that the boron nitride can’t inhibit the phenomenon which cristobalite generated huge volume effect; It’s confirmed that boron nitride can’t inhibit the huge volume effect so the coating design must be modified. So the second part is that grows barium silicate layer on the quartz via dip coating method as the first layer and then boron nitride coating is as the second layer. The meaning is that boron nitride coating grows on the barium silicate layer. The reaction solution is prepared by using barium hydroxide and DI water and then grows barium silicate coating on the quartz via dip coating method with reaction solution. First up, the quartz without any coating which is blank experiment was heated up to 1400°C for 1 hour, and it’s confirmed that the cristobalite formed via GIR analysis. Not only that there were many cracks and high and low level morphology of the surface via SEM/TOPO analysis that is the phenomenon which quartz transformed into cristobalite and the adhesion test of ASTM D3359 is only 1B. On the other hand, barium silicate were heated up to 1400°C for 1 hour by 5 circles, and it’s confirmed that the cristobalite formed via GIR analysis. The most different is that there still had cracks but hadn’t high and low level morphology via SEM/TOPO analysis. It’s confirmed that the barium silicate coating can inhibit the phenomenon which cristobalite generated huge volume effect and adhesion test of ASTM D3359 is 5B. So barium silicate coating can prevent the circumstances which the coating is peeling off. Therefore, the barium silicate coating by dipping 5 circles can be used for growing the second layer.
1. 劉國雄, 鄭晃忠, 李勝隆, 林樹均, 葉均蔚, “工程材料科學(第三版)”,全華圖書, 2017.
2. L. vel, G. Demazeau and J. Etourneau, " Cubic boron nitride: synthesis, physicochemical properties and applications," Materials Science and Engineering, B10, 149 164 (1991).
3. 丁言民, “氮化硼燃燒合成製程開發”, 國立成功大學碩士論文, 2017.
4. E Martin , L Christoph, D Ralf , R Bernd , E Jens . Hexagonal Boron Nitride (hBN): Applications from Metallurgy to Cosmetics. CFI Ceramic forum international, 84:0173 9913, 2007.
5. Y Kimura, T Wakabayashi , K Okada, T Wada, H. Nishikawa. Boron nitride as a lubricant additive. Wear. 232(2):199 206, 1999.
6. E K Sichel, R E Miller, M S Abrahams, C J Buiocchi. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical Review B. 13(10):4607, 1976.
7. D M Hoffman , G L Doll P C Eklund . Optical properties of pyrolytic boron nitride in the energy range 0.05 10 eV. Physical review B. 30(10):6051, 1984.
8. R Geick, C Perry , G Rupprecht. Normal modes in hexagonal boron nitride. Phys Rev. 146(2):543, 1966.
9. T Takahashi, H Itoh, M Kuroda. Structure and properties of CVD BN thick film prepared on carbon steel substrate. J Cryst Growth. 53(2):418 4 22, 1981.
10. M. W Chase , Jr., NIST JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1 1951 , 1998.
11. R T Paine , C K Narula . Synthetic routes to boron nitride. Chem 90(1):73 91, 1990.
12. A Lipp, K A Schwetz, K Hunold. Hexagonal boron nitride: Fabrication , properties and Eur Ceram Soc. 5(1):3 9, 1989.
13. C Zhi, Y Bando, C Tan, D Golberg. Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun.135(1 2):67 70, 2005.
14. S J Yoon, A Jha. Vapour phase reduction and the synthesis of bor on based ceramic phases. J Mater Sci. 30(3):607 6 14, 1995.
15. F L Deepak, C P Vinod, K Mukhopadhyay, A Govindaraj, C N R Rao. Boron nitride nanotubes and nanowires. Chem Phys Lett. 353(5 6):345 3 52, 2002.
16. Y. Wang, Y. Yamamoto, H. Kiyono and S. Shimada, "Effect of Ambient Gas and Temperature on Crystallization of Boron Nitride Spheres Prepared by Vapor Phase Pyrolysis of Ammonia Borane," Journal of the American Ceramic Society, 92(4), 787-792, (2009).
17. G. Lian, X. Zhang, S. Zhang, D. Liu, D. Cui and Q.Wang, "Controlled fabrication of ultrathin shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment ,," Engerg Environmenta l Science, 5(5), 7072 7080, (2012).
18. 徐煜翔, “燃燒合成氮化硼之製程開發”, 國立成功大學博士論文, 2015.
19. L. M. Sheppard, “Powders that Explode into materials”, Adv. Mater. and Process, Vol.129, No. pp.25 32, 1986.
20. Z. A. Munir, “Synthesis of high temperature materials by self propagating combustion methods”, American Ceramic Society Bulletin, Vol.67, No.2, pp.342 349, Feb 1988.
21. 顏永達, “氮化鈦的鋁化反應與氧化行為”, 國立交通大學碩士論文, 2009.
22. E. Medvedovski, FA. Chinski, and J. Stewart, “Wear- and Corrosion-Resistant Boride-Based Coatings Obtained through Thermal Diffusion CVD Processing”, Advanced Engineering Materials, Vol.16, No.6, pp.713-728, Jun 2014.
23. E. Medvedovski, “Formation of Corrosion-Resistant Thermal Diffusion Boride Coatings”, Advanced Engineering Materials, Vol.18, No.1, pp.11-33, Jan 2016.
24. E. Medvedovski, “Preparation of boron nitride-based coatings through thermal diffusion process”, Advances in Applied Ceramics, Vol.117, No.4, pp.221-230, 2017.
25. E. Medvedovski, J. Jiang, and M. Robertson, “Tribological properties of boride based thermal diffusion coatings”, Advances in Applied Ceramics, Vol.113, No.7, pp.427-437, Oct 2014.
26. E. Medvedovski, J. Jiang, and M. Robertson, “Boride-based coatings for protection of cast iron against wear”, Advanced Engineering Materials, Vol.115, No.8, pp.483-494, 2016.
27. E. Medvedovski, J. Jiang, and M. Robertson, “Iron boride-based thermal diffusion coatings for tribo-corrosion oil production applications”, Ceramics International, Vol.42, No.2, pp.3190-3211, Feb 2016.
28. Y. Zheng, and SB. Wang, “Synthesis of boron nitride coatings on quartz fibers: Thickness control and mechanism research”, Applied Surface Science, Vol.257, No.24, pp.10752-10757, Oct 2011.
29. Y. Zheng, and SB. Wang, “The effect of SiO2-doped boron nitride multiple coatings on mechanical properties of quartz fibers”, Applied Surface Science, Vol.258, No.7, pp.2901-2905, Jan 2012.
30. R. Pankajavalli, S. Anthonysamy, K. Ananthasivan, and P.R Vasudeva Rao, “Vapour pressure and standard enthalpy of sublimation of H3BO3”, Journal of Nuclear Materials, Vol.362, No.1, pp.128-131, May 2007.
31. H. Onoda, A. Takenaka, K. Kojima, and H. Nariai, “Influence of addition of urea and its related compounds on formation of various neodymium and cerium phosphates”, Materials Chemistry and Physics, Vol.82, No.1, pp.194-198, Sep 2003.
32. J. Grdadolnik, and Y. Marechal, “Urea and urea-water solutions-an infrared study”, Journal of Molecular Structure, Vol.615, No.1-3, pp.177-189, Sep 2002.
33. S. Rudolph, “Boron nitride release coatings”, 7th Australian Asian Pacific Conference, Aluminum Cast House Technology, pp.163-170, 2001.
34. 孫寶德, 張佼, 萬祥輝, 東青, 李飛, 韓延峰, 董安平, “精鋁提純用鐵基坩堝防護複合塗層”, C.N. Patent No.104,889,036, 2016.
35. 王俊, 疏達, 李克, 倪紅軍, 張佼, 孫寶德, “耐鋅液腐蝕的塗層及其使用方法”, C.N. Patent No.1,235,702, 2006.
36. 吳旭斌, “氮化鋁燃燒合成量產及氮化硼抗侵蝕塗料製程開發”, 國立成功大學碩士論文, 2018.
37. A.F. Holleman and E. Wyberg, “Lehrbuch der anorganischen Chemie”, Walter Gruyter Verlag, Berlin, New York, ISBN:3 11 007511 3, 1985.
38. R. Rykart, “Quarz-Monographie - Die Eigenheiten von Bergkristall, Rauchquarz, Amethyst, Chalcedon, Achat, Opal und anderen Varietäten”, Ott Verlag Thun, 2nd. Edition, ISBN:3 7225 6204 X, 1995.
39. B. Matovic, J. Lukovic, M. Nikolic, B. Babic, N. Stankovic, B. Jokic, and B. Jelenkovic, “Synthesis and characterization of nanocrystaline hexagonal boron nitride powders: XRD and luminescence properties”, Ceramics International, Vol.42, No.15, pp.16655-16658, Nov 2016.
40. Dina H.A. Besisa, Mahmoud A.A. Hagras, Emad M.M. Ewais, Yasser M.Z. Ahmed, Zaki I. Zaki, and , Adel. Ahmed, “Low temperature synthesis of nano-crystalline h-boron nitride from boric acid/urea precursors”, Journal of Ceramic Processing Research, Vol.17, No.12, pp.1219-1225, Dec 2016.
41. Robert T. Paine, and Chaitanya K. Narula, “Synthetic routes to boron nitride”, Chemical Reviews, Vol.90, No.1, pp.73-91, Jan 1990.
42. 鄭信民, 林麗娟, “X光繞射應用簡介”, 工業材料雜誌, 181期, 91年.
43. “色漆和清漆漆膜的划痕實驗”, 中華人民共和國國家標準, GBT9286-1998, 1988.
44. “Paints and varnishes, Cross-cut test”, International Organization for Standardization, ISO 2409-1992, 1992.
45. “Standard Test Methods for Rating Adhesion by Tape Test”, American Society for Testing and Materials, ASTM D3359, 2010.
46. K.M. Davis, and M. Tomozawa, “An infrared spectroscopic study of water-related species in silica glasses”, Journal of Non-Crystalline Solids, Vol.201, No.3, pp.177-198, Jun 1996.
47. R.H. DOREMUS, “Diffusion of water in silica glass”, Journal of Materials Research, Vol.10, No.9, pp.2379-2389, Sep 1995.
48. M. Hubacek, and M. Ueki, “Chemical Reactions in Hexagonal Boron Nitride System”, Journal of Solid State Chemistry, Vol.123, No.2, pp.215-222, May 1996.
49. F. Fitriana, and L. Aldes, “PREPARATION, CHARACTERIZATION, AND THERMAL STABILITY OF B2O3-SiO2”, Science and Technology Indonesia, Vol.2, No.1, pp.22-24, Jun 2017.
50. 林麗娟, “X光繞射原理及其應用”, 工業材料, 86期, 83年.
51. 史才成, 吴洁, 张安, 徐昌华, 秦舒, “石英坩埚涂层的制备方法”, C.N. Patent No.102260902 A.
52. 杨业林, 池金林, “一种多晶硅铸锭用涂层石英坩埚”, C.N. Patent No.201762478 U.
53. 池金林, “太阳能硅单晶生产用涂层石英坩埚”, C.N. Patent No.102199787 A.
54. 陈宝昌, 刘爱军, 金军, 李鹏飞, 邵天聪, 冯涛, “一种用于石英坩埚氢氧化钡涂层装置的喷雾系统”, C.N. Patent No.102992643 A.
55. T. Tsujimoto, and Y. Tsuji, “Surface modification process of quartz glass crucible”, E.P. Patnet No.1 304 399 A1.
56. BV. L'vov, and VL. Ugolkov, “Peculiarities of CaCO3, SrCO3 and BaCO3 decomposition in CO2 as a proof of their primary dissociative evaporation”, Thermochimica Acta, Vol.410, Iss.1-2, pp.47-55, Feb 2004.
57. S. Maitra, N. Chakrabarty, and J. Pramanik, “Decomposition kinetics of alkaline earth carbonates by integral approximation method”, Cerâmica, Vol.54, No.331, pp.268-272, Sep 2008.
58. R. Zhang, H.H Mao, P. Halli, and P. Taskinen, “Experimental phase stability investigation of compounds and thermodynamic assessment of the BaO-SiO2 binary system”, Journal of Materials Science, Vol.51, No.10, pp.4984-4995, May 2016.
59. EM. Levin, and HF Mcmurdie, “The System BaO-B2O3”, Journal of Research of the National Bureau of Standard, Vol.42, No.2, pp.131-138, 1949.
60. R. Müller, E.D. Zanotto, and V.M. Fokin, “Surface crystallization of silicate glasses: nucleation sites and kinetics”, Journal of Non-Crystalline Solids, Vol.274, Iss.1-3, pp.208-231, Sep 2000.
校內:2024-06-28公開