| 研究生: |
陳柏佑 Chen, Bo-Yo |
|---|---|
| 論文名稱: |
混合微分轉換/有限差分法在非線性暫態熱傳問題之研究 Application of Hybrid Differential Transformation/Finite Difference Method on the Nonlinear Transient Heat Conduction Problem |
| 指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 微分轉換法 、雙曲線型熱傳導問題 |
| 外文關鍵詞: | hyperbolic heat conduction problem, differential transformation |
| 相關次數: | 點閱:129 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文運用微分轉換法結合有限差分法於考慮規則外型與不規則外型邊界下求解非線性及非均質熱傳導問題。同時,亦運用微分轉換法結合有限差分法於求解雙曲線型熱傳導問題。文中首先介紹微分轉換理論的基本定義、性質及演算方法,然後介紹此法混合有限差分法在各種熱傳導問題上的應用。
研究結果顯示運用微分轉換混合有限差分法不管在規則外型或不規則外型邊界下皆能兼具效率及準確性的求解非線性及非均質熱傳導問題。此外,以微分轉換混合有限差分法亦可應用於求解雙曲線型熱傳導問題,並得到良好的模擬結果。經由選取一適當的差分格點數後將能有效抑制位於熱傳波前陡峭不連續處的數值振盪現象發生。一般說來,使用微分轉換法進行模擬求解與其他方法相比較所需的運算處理時間較為短暫。有別於以往運用積分運算求解的方法,以微分轉換法求解各類熱傳導問題省去了冗長及繁雜的變換程序,不僅顯得簡易且將更具系統性。
In this research, the hybrid method which combines differential transformation and finite difference approximation techniques was employed to solve nonlinear heat conduction problems and non-homogeneous heat conduction problems in regular and irregular regions. Moreover, the use of a hybrid method which combines differential transformation and finite difference approximation was also employed to solve hyperbolic heat conduction problems. The basic definitions and properties of the differential transformation method were introduced briefly and the applications of this method on the heat conduction problems were displayed later.
The results of this research show that the hybrid method of differential transformation and finite difference methods can be used to solve nonlinear and non-homogeneous heat conduction problems accurately and efficiently whether in regular or irregular region. Besides this, the hybrid method of differential transformation and finite difference can also be applied to solve the hyperbolic heat conduction problems for good results. The oscillations which arise in the vicinity of sharp discontinuities can be successfully suppressed by calculating with an appropriate number of grids. In usual case, applying the hybrid method on the simulation procedure consumes less CPU time as compared with other methods. Unlike other integral transform methods, using the differential transform to solve heat conduction problems leaves out the copious and complex transform procedure and appears not only brief but also more systematical.
A.J. Kassab, E. Divo, Ageneralized boundary integral equation for isotropic heat conduction with spatially varying thermal conductivity, Engineering Analysis with boundary element, 18, pp. 273-286, 1996.
C. Cattaneo, Surune forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée, C.R. Acad. Sci, 247, 431-433, 1958.
C.K. Chen, S.H. Ho, Application of Differential Transformation to Eigenvalue problem, Applied Mathematics and Computation, Vol.79, pp.173-188, 1996.
C.K Chen, S.H. Ho, Free Vibration Analysis of non-uniform Timoshenko Beams Using Differential Transform, Applied Mathematical modeling, Vol.22, No.4-5, pp.219-234, 1998a.
C.L. Chen, Y.C. Liu, Solution of two-boundary-value-problems using the differential transform method, Journal of Optimization Theory and Application, 99, pp. 23-35, 1998.
C.N. Chen, The development of irregular elements for differential quadrature element method steady state heat conduction analysis, Comput. Methods Appl. Mech. Engrg, 170, pp. 1-14, 1999.
C.N Cheng, DQEM and DQFDM irregular elements for analyses of 2-D heat conduction in orthotropic media, Applied Mathematical modeling, 28, pp. 617-638, 2004.
D.E. Glass, M.N. Özişik and B. Vick, Hyperbolic heat conduction with surface radiation, Int. J. Heat Mass Transfer, 28, pp. 1823-1830, 1985.
D.E. Glass, M.N. Özişik, D.S McRae and B. Vick, On the numerical solution of hyperbolic heat conduction, Numer. Heat transfer, 8, pp. 497-504, 1985.
Edward F. Obert, Boundary Value Problems of Heat Conduction, International Textbook Company, 1968.
G..F. Cary, M. Tasi Hyperbolic heat transfer with reflection, Numerical Heat transfer, Vol.5, pp. 309-327, 1982.
H.Q. Yang, Characteristics-based, high-order accurate and nonoscillatory numerical method for hyperbolic heat conduction, Numer. Heat transfer, 18(Part B), pp.221-241, 1990.
H.T. Chen, J.Y. Lin Numerical analysis for hyperbolic heat conduction, Int. J. Heat Mass Transfer. Vol. 36, No.11, pp. 2891-2898, 1993.
J.S. Chiou, J.R. Tzeng Application of Taylor Transformation to Nonlinear Vibration Problems, Trans. ASME, J of Vibration and Acoustics, Vol. 118, pp. 83-87, 1996.
K.K. Tamma, S.B Railkar, Specially tailored transfinite-element formulations for hyperbolic heat conduction involving non-fourier effects, Numer. Heat transfer, 15(Part B), pp. 211-226, 1989.
K.K Tamma, J.F. D’Costa, Transient modeling analysis of hyperbolic heat conduction problem employing mixed implicit-explicit α method, Numer Heat Transfer, 19(Part B), 49-68, 1991.
L.T. Yu, C.K Chen, Application of Taylor Transformation to Optimize Rectangular Fins with Variable Thermal parameters, Applied Mathematical Modeling, 22, pp.11-21, 1998.
L.T Yu, C.K. Chen, The Solution of the Blasius Equation by the Differential Transform method, Math. Comput. Modeling, Vol. 28, No.1, pp. 101-111, 1998.
M. Kikuta, H. Togoh and M. Tanaka, A boundary element method for nonlinear transient heat conduction problem, In Boundary Elements VIII, Vol. 1(Edited by M. Tanaka and C. A. Brebbia), pp. 47-58, 1986.
M.J. Jang, C.L. Chen, Y.C. Liu ,Two-dimensional differential transform for partial differential equations, Applied Mathematics and Computation, 121, pp. 261-270, 2001.
P. Vernotte, Les paradoxes de la théorie continue de L’équation de la chaleur, C.R. Acad. Sci, 246, pp. 3154-3155, 1958.
R. Bialecki, Solving nonlinear heat transfer problems by BEM. In Boundary Elements X, Vol. 2(Edited by C. A. Brebbia), pp. 195-222, 1988.
T. Goto, M. Suzuki, A boundary integral equation method for nonlinear heat conduction problems with temperature-dependent material properties, nt. J. Heat Mass Transfer, Vol.39, No.4, pp. 823-830, 1996.
趙家奎, 微分轉換及其在電路中的應用,華中理工大學出版社1986.
何星輝著, 微分轉換於自旋、預扭、承受軸向負載Timoshenko樑振動問題之研究, 國立成功大學機械工程學系博士論文,1998.
朱心平著, 應用微分轉換法於強非線性物理系統之研究, 國立成功大學機械工程學系博士論文,2004