簡易檢索 / 詳目顯示

研究生: 鍾承瑋
Chung, Cheng-Wei
論文名稱: 調控耐鹽藍綠藻之氮磷水平對碳水化合物和蛋白質生產的影響與其培養系統之生命週期評估
Tailoring nitrogen and phosphorus levels for tunable carbohydrate and protein production and life cycle assessment of cultivation system in halophilic Cyanobacterium aponinum PCC10605
指導教授: 吳意珣
Ng, I-Son
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 122
中文關鍵詞: 藍綠藻藻藍蛋白糖原氮磷水平二氧化碳碳捕捉直接空氣捕捉碳中和生命週期評估碳排放
外文關鍵詞: Cyanobacterium aponinum, C-phycocyanin, glycogen, nitrogen and phosphorus levels, carbon dioxide, carbon capture, direct air capture, carbon neutrality, life cycle assessment, carbon emissions
相關次數: 點閱:32下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從工業革命以來,人口快速增長和高度科技發展導致資源大量消耗及二氧化碳大量排放,人類正面臨能源危機、食物短缺和全球暖化等環境衝擊。微藻不僅具有優越的二氧化碳捕捉效率,還能通過光合作用合成高價值化學品,已成為替代石化燃料的新興能源及達成碳中和的關鍵技術。
    本研究以臺灣海域發現的藍綠藻種Cyanobacterium aponinum PCC10605為對象,探討其在鹽份條件下的碳捕捉效率、藻藍蛋白(C-PC)和碳水化合物的生產。碳、氮、磷是藍綠藻生長所需的三種主要營養源。許多研究表明,在缺氮環境下,藍綠藻透過分解胞內色素及蛋白質來合成糖原,以維持胞內代謝穩定及自身生長。然而,關於氮和磷之間效應的研究相對較少。本研究基於七天培養週期,分析在氮限制(2 mM)和氮充足(6 mM)條件下,不同磷水平對碳水化合物和藻藍蛋白產量的影響。同時,還探討了光照強度、二氧化碳濃度、溫度及補料策略在不同氮磷添加量下對PCC10605的影響。
    結果顯示,將硝酸氮從2 mM增加至6 mM,使C-PC產率提升了9.7倍,同時碳水化合物產量下降91.1%。在氮限制條件下,磷濃度從0.1 mM提高到2 mM上調了碳酸酐酶(CA)、ADP-葡萄糖焦磷酸化酶(glgC)和糖原磷酸化酶(glgP)的基因表達,從而促進生物量和碳水化合物的增長。此外,氮磷水平對PCC10605的代謝調控還受光照、二氧化碳進氣濃度和溫度等物理因子的影響,並發現在直接空氣捕捉(DAC)條件下2 mM的硝酸氮搭配2 mM的磷其達到76%的碳捕捉率。整體來說,在較溫和的條件下(1% CO2、100 μE),2 mM的氮搭配2 mM的磷能促使糖原累積量達到552 mg/L,而6 mM的氮搭配0.1 mM的磷則可達到較高的蛋白質產率304 mg/g-DCW和C-PC產率60 mg/g-DCW。這些發現強調了透過調控營養源的添加來控制PCC10605碳水化合物和蛋白質之間的平衡,並突顯了氮磷水平的影響。
    接著探討微藻工程直接空氣捕捉技術的生命週期評估(LCA),以生產乾燥微藻和C-PC為目標,利用SimaPro軟體進行培養過程中的LCA分析,最終計算實驗室等級微藻製程的碳排放當量。研究結果顯示,透過將培養基換成的其他氮源,發現在不調控pH值的前提下,尿素(Urea)以及商業化肥(CF,NPK 24-5.1-20.5)對培養基選擇上的碳排放量有顯著的降低外,同時也可獲得較高的生物量,計算出培養基的碳封存量分別為0.737以及0.185 g CO2/L/week。此外,模擬戶外培養使用太陽能板,可達成每周1312 g CO2/week的減碳效益,相對室內培養系統降低了99.9%的碳排放當量,突顯了淨零目標的技術可行性。而在實驗室規模的培養模式下,透過PCC10605生產1 g的C-PC會排放127 kg CO2 eq,主要排放來源為電力消耗。
    本研究透過探討PCC10605在營養源調控下的化學產品趨勢,並結合直接空氣捕捉的LCA,提出未來微藻工程實現淨零排放與永續經濟的政策建議。

    Microalgae, with their superior carbon capture efficiency and ability to synthesize high-value chemicals through photosynthesis, are a promising alternative energy source and key for carbon neutrality. Studies show that under nitrogen-deficient conditions, cyanobacteria synthesize glycogen by degrading intracellular pigments and proteins to maintain stability and growth. However, the regulation of nitrogen and phosphorus levels remains unclear. This study focused on Cyanobacterium aponinum PCC10605 to investigate its carbon capture efficiency, production of C-phycocyanin (C-PC), and glycogen under saline conditions.
    Over a seven-day cultivation cycle, the effects of different phosphorus levels on glycogen and C-PC production under nitrogen limitation (2 mM) and sufficiency (6 mM) were analyzed. Increasing nitrate (NO3-N) from 2 to 6 mM resulted in a 9.7-fold increase in C-PC and a 91.1% decrease in glycogen. Elevating phosphorus from 0.1 to 2 mM under nitrogen limitation enhanced biomass and glycogen through upregulation of carbonic anhydrase (CA), ADP-glucose pyrophosphorylase (glgC), and glycogen phosphorylase (glgP). Nitrogen and phosphorus levels, along with light intensity, CO2 concentration, and temperature, influenced PCC10605's metabolic regulation. Under direct air capture (DAC) conditions, 2 mM nitrate nitrogen combined with 2 mM phosphorus achieved a carbon capture rate of 76%. In moderate conditions (1% CO2, 100 μE), 2 mM nitrogen with 2 mM phosphorus promoted glycogen accumulation up to 552 mg/L, while 6 mM nitrogen with 0.1 mM phosphorus achieved protein yield of 304 mg/g-DCW and C-PC yield of 60 mg/g-DCW. These findings highlight the trade-off between glycogen and protein based on nitrogen and phosphorus levels.
    Additionally, a life cycle assessment (LCA) of microalgae engineering for direct air capture technology was conducted using SimaPro software. LCA analysis during cultivation showed significant carbon emissions reductions using urea and commercial fertilizer (CF, NPK 24-5.1-20.5) as nitrogen sources, achieving higher biomass yields without pH adjustment. The medium's carbon sequestration was 0.737 and 0.185 g CO2/L/week, respectively. Outdoor cultivation simulations using solar panels achieved a carbon reduction benefit of 1312 g CO2 eq/week, demonstrating a 99.9% reduction in CO2 emissions compared to indoor cultivation. Producing 1 g of C-PC with PCC10605 resulted in emissions of 127 kg CO2 eq, mainly from electricity consumption. This study presents policy recommendations for net-zero emissions and sustainable economies in microalgae engineering, exploring PCC10605's chemical product trends under nutrient regulation and combining LCA with direct air capture.

    摘要 I Extended Abstract III 誌謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 符號 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與架構 3 第二章 文獻回顧 5 2.1 環境議題與碳中和目標 5 2.1.1 能源危機以及全球暖化 5 2.1.2 永續經濟為解決良機 6 2.1.3 微藻固碳為具潛力的碳中和技術 8 2.2 藍綠藻的介紹 10 2.2.1 藍綠藻的特性 10 2.2.2 碳、氮、磷對微藻的影響 11 2.2.3 藍綠藻的糖原代謝機制 12 2.2.4 藍綠藻的應用與發展 15 2.3 生命週期評估 (Life-cycle assessment, LCA) 17 2.3.1 LCA的歷史與發展 17 2.3.2 LCA方法學與架構 20 2.3.3 常見LCA軟體簡介 22 第三章 實驗材料與方法 24 3.1 實驗材料 24 3.2 實驗儀器 27 3.3 溶液配置 28 3.4 實驗方法 31 3.4.1 培養方法 31 3.4.2 測量OD值、pH值、硝酸根濃度及細胞乾重 31 3.4.3 葉綠素a與b之萃取與定量分析 32 3.4.4 碳水化合物(糖原)的萃取與定量分析 33 3.4.5 一維蛋白質電泳分析與總蛋白質定量分析 34 3.4.6 總蛋白質與藻藍蛋白(C-PC)萃取與定量分析 34 3.4.7 相對基因表達水平分析 35 3.4.8 表面電位(zeta potential)測定 36 3.5 碳捕捉量計算 37 3.5.1 碳質量平衡式推導 37 3.5.2 二氧化碳捕捉效率估算 37 3.6 LCA模型建立 39 第四章 結果與討論 46 4.1 調控PCC10605之氮磷水平對碳水化合物和蛋白質生產的影響 46 4.1.1 設定氮限制與氮充足條件 46 4.1.2 氮源及濃度的比較 47 4.1.3 不同氮磷條件下的影響 48 4.1.4 不同氮磷條件對基因轉錄水平的影響 52 4.1.5 光照強度與氮磷效應對藍綠藻的影響 56 4.1.6 溫度與氮磷效應對藍綠藻的影響 60 4.1.7 二氧化碳濃度與氮磷效應對藍綠藻的影響 63 4.2 實驗室等級培養結合生命週期評估 68 4.2.1 常用藥品之碳排係數表 68 4.2.2 不同氮源與二氧化碳濃度對PCC10605培養的影響 70 4.2.3 以實驗室規模培養為系統之生命週期評估 73 第五章 結論與未來展望 83 5.1 結論 83 5.1.1 調控耐鹽藍綠藻之氮磷水平對碳水化合物和蛋白質生產的影響 83 5.1.2 微藻製程的生命週期評估 84 5.2 未來展望 84 第六章 參考文獻 86 附錄 99

    Aikawa, S., Izumi, Y., Matsuda, F., Hasunuma, T., Chang, J.S., Kondo, A., 2012. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol, 108, 211–215.
    Archibald, J.M., 2015. Endosymbiosis and eukaryotic cell evolution. Curr Biol, 25(19), R911–R921.
    Armstrong McKay, D.I., Staal, A., Abrams, J.F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S.E., Rockström, J., Lenton, T.M., 2022. Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science, 377(6611).
    Ball, S.G., Morell, M.K., 2003. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol, 54(1), 207–233
    Bar-Even, A., Noor, E., Milo, R., 2012. A survey of carbon fixation pathways through a quantitative lens. J Exp Bot, 63(6), 2325–2342.
    Beardall, J., Raven, J.A., 2016. Carbon acquisition by microalgae. In The Physiology of Microalgae (pp. 89–99). Springer International Publishing.
    Bengtsson, M., Steen, B., 2000. Weighting in LCA – approaches and applications. Environ Prog, 19(2), 101–109.
    Bhavsar, A., Hingar, D., Ostwal, S., Thakkar, I., Jadeja, S., Shah, M., 2023. The current scope and stand of carbon capture storage and utilization: A comprehensive review. Case Stud Chem Environ Eng, 8, 100368.
    Bi, Y., Guo, Y., Christie, P., 2022. Mining subsidence area reconstruction with N2-fixing plants promotes arbuscular mycorrhizal fungal biodiversity and microbial biomass C:N:P stoichiometry of cyanobacterial biocrusts. For Ecol Manage, 503, 119763.
    Bjørn, A., Owsianiak, M., Molin, C., Hauschild, M.Z., 2018. LCA History. In Life Cycle Assessment (pp. 17–30). Springer International Publishing.
    BLANK, C.E., SÁNCHEZ‐BARACALDO, P., 2010. Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology, 8(1), 1–23.
    Canizales, S., Sliwszcinka, M., Russo, A., Bentvelzen, S., Temmink, H., Verschoor, A.M., Wijffels, R.H., Janssen, M., 2021. Cyanobacterial growth and cyanophycin production with urea and ammonium as nitrogen source. J Appl Phycol, 33(6), 3565–3577.
    Cap, S., de Koning, A., Tukker, A., Scherer, L., 2024. (In)Sufficiency of industrial decarbonization to reduce household carbon footprints to 1.5°C-compatible levels. Sustain Prod Consum, 45, 216–227.
    Carrieri, D., Jurista, T., Yazvenko, N., Schafer Medina, A., Strickland, D., Roberts, J.M., 2021. Overexpression of NblA decreases phycobilisome content and enhances photosynthetic growth of the cyanobacterium Synechococcus elongatus PCC 7942. Algal Res, 60, 102510.
    Chen, J.M., 2021. Carbon neutrality: Toward a sustainable future. The Innov, 2(3), 100127.
    Cheng, J., Zhang, K., Hou, Y., 2023. The current situations and limitations of genetic engineering in cyanobacteria: a mini review. Mol Biol Rep, 50(6), 5481–5487.
    Cheng, Y.W., Lim, J.S.M., Chong, C.C., Lam, M.K., Lim, J.W., Tan, I.S., Foo, H.C.Y., Show, P.L., Lim, S., 2021. Unravelling CO2 capture performance of microalgae cultivation and other technologies via comparative carbon balance analysis. J Environ Chem Eng, 9(6), 106519.
    Chentir, I., Hamdi, M., Li, S., Doumandji, A., Markou, G., Nasri, M., 2018. Stability, bio-functionality and bio-activity of crude phycocyanin from a two-phase cultured Saharian Arthrospira sp. strain. Algal Res, 35, 395–406.
    Choi, S.Y., Park, B., Choi, I.-G., Sim, S.J., Lee, S.-M., Um, Y., Woo, H.M., 2016. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq. Sci Rep, 6(1), 30584.
    Chu, F., Cheng, J., Li, K., Wang, Y., Li, X., Yang, W., 2020. Enhanced lipid accumulation through a regulated metabolic pathway of phosphorus luxury uptake in the microalga Chlorella vulgaris under nitrogen starvation and phosphorus repletion. ACS Sustain Chem Eng, 8(22), 8137–8147.
    Chu, F., Cheng, J., Zhang, X., Ye, Q., Zhou, J., 2019. Enhancing lipid production in microalgae Chlorella PY-ZU1 with phosphorus excess and nitrogen starvation under 15% CO2 in a continuous two-step cultivation process. Chem Eng J, 375, 121912.
    Cogo Badan, I., Jung, S.-H., Singh, R., Vivekanand, V., Knappert, J., Rauh, C., Lindenberger, C., 2024. Life cycle assessment of exopolysaccharides and phycocyanin production with Arthrospira platensis. Fermentation, 10(3), 163.
    Cole, G.M., Greene, J.M., Quinn, J.C., McDaniel, B., Kemp, L., Simmons, D., Hodges, T., Nobles, D., Weiss, T.L., McGowen, J., McDaniel, S., 2023. Integrated techno-economic and life cycle assessment of a novel algae-based coating for direct air carbon capture and sequestration. J CO2 Util, 69, 102421.
    Condor, B.E., de Luna, M.D.G., Abarca, R.R.M., Chang, Y., Leong, Y.K., Chen, C., Chen, P., Lee, D., Chang, J., 2022. Optimization and modeling of carbohydrate production in microalgae for use as feedstock in bioethanol fermentation. Int J Energy Res, 46(13), 19300–19312.
    Corominas, L., Byrne, D.M., Guest, J.S., Hospido, A., Roux, P., Shaw, A., Short, M.D., 2020. The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Res, 184, 116058.
    Cuellar-Bermudez, S.P., Struyf, T., Versluys, M., Van den Ende, W., Wattiez, R., Muylaert, K., 2022. Quantification of extracellular and biomass carbohydrates by Arthrospira under nitrogen starvation at lab-scale. Algal Res, 68, 102907.
    Damrow, R., Maldener, I., Zilliges, Y., 2016. The multiple functions of common microbial carbon polymers, glycogen and PHB, during stress responses in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol, 7.
    Danny Harvey, L.D., 1993. A guide to global warming potentials (GWPs). Energy Policy, 21(1), 24–34.
    Deschoenmaeker, F., Bayon-Vicente, G., Sachdeva, N., Depraetere, O., Cabrera Pino, J.C., Leroy, B., Muylaert, K., Wattiez, R., 2017. Impact of different nitrogen sources on the growth of Arthrospira sp. PCC 8005 under batch and continuous cultivation – A biochemical, transcriptomic and proteomic profile. Bioresour Technol, 237, 78–88.
    Dreyer, L.C., Niemann, A.L., Hauschild, M.Z., 2003. Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99. Int J Life Cycle Assess, 8(4), 191–200.
    Duran Quintero, C., Ventura, A., Lépine, O., Pruvost, J., 2021. Eco-design of spirulina solar cultivation: Key aspects to reduce environmental impacts using Life Cycle Assessment. J Clean Prod, 299, 126741.
    Effendi, S.S.W., Ng, I.S., 2019. The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: A critical review. Process Biochem, 87, 55–65.
    Erratt, K.J., Creed, I.F., Trick, C.G., 2020. Differential drawdown of ammonium, nitrate, and urea by freshwater chlorophytes and cyanobacteria. J Phycol, 56(2), 458–468.
    Even, C., Hadroug, D., Boumlaik, Y., Simon, G., 2022. Microalgae-based Bioenergy with Carbon Capture and Storage quantified as a Negative Emissions Technology. Energy Nexus, 7, 100117.
    Fernandes, F., Silkina, A., Gayo-Peláez, J.I., Kapoore, R.V., de la Broise, D., Llewellyn, C.A., 2022. Microalgae cultivation on nutrient rich digestate: The importance of strain and digestate tailoring under pH control. Appl Sci, 12(11), 5429.
    Fernández, E., Llamas, Á., Galván, A., 2009. Nitrogen assimilation and its regulation. In The Chlamydomonas Sourcebook (pp. 69–113). Elsevier.
    Fernández-Rojas, B., Hernández-Juárez, J., Pedraza-Chaverri, J., 2014. Nutraceutical properties of phycocyanin. J Funct Foods, 11, 375–392.
    Forchhammer, K., Schwarz, R., 2019. Nitrogen chlorosis in unicellular cyanobacteria – a developmental program for surviving nitrogen deprivation. Environ Microbiol, 21(4), 1173–1184.
    Gao, C., Chen, H., 2023. Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies. Util Policy, 82, 101543.
    Gao, S., Pittman, K., Edmundson, S., Huesemann, M., Greer, M., Louie, W., Chen, P., Nobles, D., Benemann, J., Crowe, B., 2023. A newly isolated alkaliphilic cyanobacterium for biomass production with direct air CO2 capture. J CO2 Uti, 69, 102399.
    Gowd, S.C., Ganeshan, P., Vigneswaran, V.S., Hossain, M.S., Kumar, D., Rajendran, K., Ngo, H.H., Pugazhendhi, A., 2023. Economic perspectives and policy insights on carbon capture, storage, and utilization for sustainable development. Sci. Total Environ, 883, 163656.
    Gründel, M., Scheunemann, R., Lockau, W., Zilliges, Y., 2012. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology, 158(12), 3032–3043.
    Guo, H., Jiang, J., Li, Y., Long, X., Han, J., 2023. An aging giant at the center of global warming: Population dynamics and its effect on CO2 emissions in China. J Environ Manage, 327, 116906.
    Gür, T.M., 2022. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies. Prog Energy Combust Sci, 89, 100965.
    Hashimoto, K., 2019. Global temperature and atmospheric carbon dioxide concentration. In: Global Carbon Dioxide Recycling (pp. 5–17). Springer International Publishing.
    Hellweg, S., Milà i Canals, L., 2014. Emerging approaches, challenges and opportunities in life cycle assessment. Science, 344(6188), 1109–1113.
    Herrmann, I.T., Moltesen, A., 2015. Does it matter which Life Cycle Assessment (LCA) tool you choose? – a comparative assessment of SimaPro and GaBi. J Clean Prod, 86, 163–169.
    Hidalgo Martinez, D., Melis, A., 2023. Cyanobacterial phycobilisomes as a platform for the stable production of heterologous enzymes and other proteins. Metab Eng, 77, 174–187.
    Hohmann-Marriott, M.F., Blankenship, R.E., 2011. Evolution of Photosynthesis. Annu Rev Plant Biol, 62(1), 515–548.
    Hsieh-Lo, M., Castillo, G., Ochoa-Becerra, M.A., Mojica, L., 2019. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Res, 42, 101600.
    Hunt, R.G., Sellers, J.D., Franklin, W.E., 1992. Resource and environmental profile analysis: A life cycle environmental assessment for products and procedures. Environ Impact Assess Rev, 12(3), 245–269.
    IPCC, 2021. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In Climate Change 2021 – The Physical Science Basis (pp. 3–32). Cambridge University Press.
    Jentzsch, L., Grossart, H.-P., Plewe, S., Schulze-Makuch, D., Goldhammer, T., 2023. Response of cyanobacterial mats to ambient phosphate fluctuations: phosphorus cycling, polyphosphate accumulation and stoichiometric flexibility. ISME Communications, 3(1).
    Jiang, N., Zhu, C., Hu, Z.-Z., McPhaden, M.J., Chen, D., Liu, B., Ma, S., Yan, Y., Zhou, T., Qian, W., Luo, J., Yang, X., Liu, F., Zhu, Y., 2024. Enhanced risk of record-breaking regional temperatures during the 2023–24 El Niño. Sci Rep, 14(1), 2521.
    Kamshybayeva, G.K., Kossalbayev, B.D., Sadvakasova, A.K., Kakimova, A.B., Bauenova, M.O., Zayadan, B.K., Lan, C.-W., Alwasel, S., Tomo, T., Chang, J.-S., Allakhverdiev, S.I., 2024. Genetic engineering contribution to developing cyanobacteria-based hydrogen energy to reduce carbon emissions and establish a hydrogen economy. Int J Hydrogen Energy, 54, 491–511.
    Kato, Y., Inabe, K., Hidese, R., Kondo, A., Hasunuma, T., 2022. Metabolomics-based engineering for biofuel and bio-based chemical production in microalgae and cyanobacteria: A review. Bioresour Technol, 344, 126196.
    Kerner, M., Wolff, T., Brinkmann, T., 2024. Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades. Bioresour Technol, 391, 129917.
    Khetkorn, W., Rastogi, R.P., Incharoensakdi, A., Lindblad, P., Madamwar, D., Pandey, A., Larroche, C., 2017. Microalgal hydrogen production – A review. Bioresour Technol, 243, 1194–1206.
    Kotagodahetti, R., Hewage, K., Karunathilake, H., Sadiq, R., 2021. Evaluating carbon capturing strategies for emissions reduction in community energy systems: A life cycle thinking approach. Energy, 232, 121012.
    Kumar, V., Sharma, N., Jaiswal, K.K., Vlaskin, M.S., Nanda, M., Tripathi, M.K., Kumar, S., 2021. Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochem, 104, 83–91.
    Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A., Adormaa, B., 2018. Greenhouse effect: Greenhouse gases and their impact on global warming. J Sci Res Rep, 17(6), 1–9.
    Kyriakopoulou, K., Papadaki, S., Krokida, M., 2015. Life cycle analysis of β-carotene extraction techniques. J Food Eng, 167, 51–58.
    Ledermann, B., Aras, M., Frankenberg-Dinkel, N., 2017. Biosynthesis of cyanobacterial light-harvesting pigments and their assembly into phycobiliproteins. In Modern Topics in the Phototrophic Prokaryotes (pp. 305–340). Springer International Publishing.
    L’Haridon, S., Markx, G.H., Ingham, C.J., Paterson, L., Duthoit, F., Le Blay, G., 2016. New Approaches for bringing the uncultured into culture. In The Marine Microbiome (pp. 401–434). Springer International Publishing.
    Li, L., Lin, J., Wu, N., Xie, S., Meng, C., Zheng, Y., Wang, X., Zhao, Y., 2022. Review and outlook on the international renewable energy development. Energy Built Environ, 3(2), 139–157.
    Lin, J.Y., Ng, I.S., 2023. Thermal cultivation of halophilic Cyanobacterium aponinum for C-phycocyanin production and simultaneously reducing carbon emission using wastewater. Chem Eng J, 461, 141968.
    Lin, J.Y., Ng, I.S., 2021. Production, isolation and characterization of C-phycocyanin from a new halo-tolerant Cyanobacterium aponinum using seawater. Bioresour Technol, 342, 125946.
    Lin, J.Y., Sri Wahyu Effendi, S., Ng, I.S., 2022a. Enhanced carbon capture and utilization (CCU) using heterologous carbonic anhydrase in Chlamydomonas reinhardtii for lutein and lipid production. Bioresour Technol, 351, 127009.
    Lin, J.Y., Tan, S.I., Yi, Y.C., Hsiang, C.C., Chang, C.H., Chen, C.Y., Chang, J.S., Ng, I.S., 2022b. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation, antibacterial and lead adsorption. Environ Res, 206, 112283.
    Lin, J.Y., Xue, C., Tan, S.I., Ng, I.S., 2021. Pyridoxal kinase PdxY mediated carbon dioxide assimilation to enhance the biomass in Chlamydomonas reinhardtii CC-400. Bioresour Technol, 322, 124530.
    Liu, J., Yuan, C., Hu, G., & Li, F., 2012. Effects of light intensity on the growth and lipid accumulation of microalga Scenedesmus sp. 11-1 under nitrogen limitation. Appl Biochem Biotechnol, 166(8), 2127–2137.
    Liu, R., Qin, S., Li, W., 2022. Phycocyanin: Anti-inflammatory effect and mechanism. Biomed Pharmacother, 153, 113362.
    Liu, W., Zhu, Q., Zhou, X., Peng, C., 2019. Comparative analyses of different biogenic CO2 emission accounting systems in life cycle assessment. Sci Total Environ, 652, 1456–1462.
    Luan, G., Zhang, S., Wang, M., Lu, X., 2019. Progress and perspective on cyanobacterial glycogen metabolism engineering. Biotechnol Adv, 37(5), 771–786.
    Lynch, J., Cain, M., Pierrehumbert, R., Allen, M., 2020. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ Res Lett, 15(4), 044023.
    Maltsev, Y., Kulikovskiy, M., Maltseva, S., 2023. Nitrogen and phosphorus stress as a tool to induce lipid production in microalgae. Microb Cell Fact, 22(1), 239.
    Manirafasha, E., Murwanashyaka, T., Ndikubwimana, T., Rashid Ahmed, N., Liu, J., Lu, Y., Zeng, X., Ling, X., Jing, K., 2018. Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresour Technol, 255, 293–301.
    Markou, G., Vandamme, D., Muylaert, K., 2014. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res, 65, 186–202.
    Marshall, J.P., 2016. Disordering fantasies of coal and technology: Carbon capture and storage in Australia. Energy Policy, 99, 288–298.
    Matsumoto, T., Awai, K., 2020. Adaptations in chloroplast membrane lipid synthesis from synthesis in ancestral cyanobacterial endosymbionts. Biochem Biophys Res Commun, 528(3), 473–477.
    Min, J., Yan, G., Abed, A.M., Elattar, S., Amine Khadimallah, M., Jan, A., Elhosiny Ali, H., 2022. The effect of carbon dioxide emissions on the building energy efficiency. Fuel, 326, 124842.
    Molinuevo-Salces, B., Riaño, B., Hernández, D., Cruz García-González, M., 2019. Microalgae and wastewater treatment: Advantages and disadvantages. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment (pp. 505–533).
    Monteiro, H., Freire, F., 2012. Life-cycle assessment of a house with alternative exterior walls: Comparison of three impact assessment methods. Energy Build, 47, 572–583.
    Moradiya, K.K., Marathe, K. V., 2023. Life cycle assessment (LCA) of marine microalgae cultivation and harvesting process for the Indian context. Sustain Energy Technol, 56, 103063.
    Muluneh, M.G., 2021. Impact of climate change on biodiversity and food security: a global perspective—a review article. Agric Food Secur, 10(1), 36.
    Muro-Pastor, M.I., Florencio, F.J., 2003. Regulation of ammonium assimilation in cyanobacteria. Plant Physiol Biochem, 41(6–7), 595–603.
    Nouri, J., Nouri, N., Moeeni, M., 2012. Development of industrial waste disposal scenarios using life-cycle assessment approach. Int J Environ Sci Technol, 9(3), 417–424.
    Østergaard, P.A., Duic, N., Noorollahi, Y., Mikulcic, H., Kalogirou, S., 2020. Sustainable development using renewable energy technology. Renew Energy, 146, 2430–2437.
    Papadaki, S., Kyriakopoulou, K., Tzovenis, I., Krokida, M., 2017. Environmental impact of phycocyanin recovery from Spirulina platensis cyanobacterium. Innov Food Sci Emerg Technol, 44, 217–223.
    Pasciucco, F., Pecorini, I., Iannelli, R., 2022. Planning the centralization level in wastewater collection and treatment: A review of assessment methods. J Clean Prod, 375, 134092.
    Pérez-López, P., de Vree, J.H., Feijoo, G., Bosma, R., Barbosa, M.J., Moreira, M.T., Wijffels, R.H., van Boxtel, A.J.B., Kleinegris, D.M.M., 2017. Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Appl Energy, 205, 1151–1164.
    Pez Jaeschke, D., Rocha Teixeira, I., Damasceno Ferreira Marczak, L., Domeneghini Mercali, G., 2021. Phycocyanin from Spirulina: A review of extraction methods and stability. Food Res Int, 143, 110314.
    Porcelli, R., Dotto, F., Pezzolesi, L., Marazza, D., Greggio, N., Righi, S., 2020. Comparative life cycle assessment of microalgae cultivation for non-energy purposes using different carbon dioxide sources. Sci Total Environ, 721, 137714.
    Rafiee, A., Khalilpour, K.R., Prest, J., Skryabin, I., 2021. Biogas as an energy vector. Biomass Bioenergy, 144, 105935.
    Ran, W., Wang, H., Liu, Y., Qi, M., Xiang, Q., Yao, C., Zhang, Y., Lan, X., 2019. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. Bioresour Technol, 291, 121894.
    Rana, R., Ganguly, R., Gupta, A.K., 2019. Life-cycle assessment of municipal solid-waste management strategies in Tricity region of India. J Mater Cycles Waste Manag, 21(3), 606–623.
    Raven, J.A., Knoll, A.H., 2010. Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiol J, 27(6–7), 572–584.
    Rehman, M., Kesharvani, S., Dwivedi, G., Gidwani Suneja, K., 2022. Impact of cultivation conditions on microalgae biomass productivity and lipid content. Mater Today Proc, 56, 282–290.
    Rey-Álvarez, B., Silvestre, J., García-Martínez, A., Sánchez-Montañés, B., 2024. A comparative approach to evaluate the toxicity of building materials through life cycle assessment. Sci Total Environ, 912, 168897.
    Richmond, A. (Ed.), 2003. Handbook of Microalgal Culture. Wiley.
    Rueda, E., García-Galán, M.J., Díez-Montero, R., Vila, J., Grifoll, M., García, J., 2020. Polyhydroxybutyrate and glycogen production in photobioreactors inoculated with wastewater borne cyanobacteria monocultures. Bioresour Technol, 295, 122233.
    Sala, S., Amadei, A.M., Beylot, A., Ardente, F., 2021. Correction to: The evolution of life cycle assessment in European policies over three decades. Int J Life Cycle Assess, 26(12), 2472–2473.
    Sandmann, M., Smetana, S., Heinz, V., Rohn, S., 2021. Comparative life cycle assessment of a mesh ultra-thin layer photobioreactor and a tubular glass photobioreactor for the production of bioactive algae extracts. Bioresour Technol, 340, 125657.
    Senge, M.O., Sergeeva, N.N., Hale, K.J., 2021. Classic highlights in porphyrin and porphyrinoid total synthesis and biosynthesis. Chem Soc Rev, 50(7), 4730–4789.
    Shalygo, N., Czarnecki, O., Peter, E., Grimm, B., 2009. Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant Mol Biol, 71(4–5), 425–436.
    Siddiki, Sk.Y.A., Mofijur, M., Kumar, P.S., Ahmed, S.F., Inayat, A., Kusumo, F., Badruddin, I.A., Khan, T.M.Y., Nghiem, L.D., Ong, H.C., Mahlia, T.M.I., 2022. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 307, 121782.
    Song, K., Tan, X., Liang, Y., Lu, X., 2016. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol, 100(18), 7865–7875.
    Srivastava, A., Shukla, P., 2022. Emerging tools and strategies in cyanobacterial omics. Trends Biotechnol, 40(1), 4–7.
    Stanier, R.Y., Cohen-Bazire, G. (1977). Phototrophic prokaryotes: The cyanobacteria. Annu Rev Microbiol, 31(1), 225–274.
    Su, Y., 2021. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci Total Environ, 762, 144590.
    Tabernero, A., Martín del Valle, E.M., Galán, M.A., 2012. Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochem Eng J, 63, 104–115.
    Tan, I.S., Lam, M.K., Foo, H.C.Y., Lim, S., Lee, K.T., 2020. Advances of macroalgae biomass for the third generation of bioethanol production. Chin J Chem Eng, 28(2), 502–517.
    Tan, S.I., Ng, I.S., 2021. Stepwise optimization of genetic RuBisCO-equipped Escherichia coli for low carbon-footprint protein and chemical production. Green Chem, 23(13), 4800–4813.
    Thielemann, A.K., Smetana, S., Pleissner, D., 2021. Life cycle assessment of hetero- and phototrophic as well as combined cultivations of Galdieria sulphuraria. Bioresour Technol, 335, 125227.
    Thrane, J., Hessen, D.O., Andersen, T., 2017. Plasticity in algal stoichiometry: Experimental evidence of a temperature‐induced shift in optimal supply N:P ratio. Limnol Oceanogr, 62(4), 1346–1354.
    Troschl, C., Meixner, K., Drosg, B., 2017. Cyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioeng, 4(4), 26.
    Vale, M.A., Ferreira, A., Pires, J.C.M., Gonçalves, A.L., 2020. CO2 capture using microalgae. In Advances in Carbon Capture (pp. 381–405). Elsevier.
    Wang, J., Wagner, N.D., Fulton, J.M., Scott, J.T., 2021. Diazotrophs modulate phycobiliproteins and nitrogen stoichiometry differently than other cyanobacteria in response to light and nitrogen availability. Limnol Oceanogr, 66(6), 2333–2345.
    Ward, L.M., Cardona, T., Holland-Moritz, H., 2019. Evolutionary implications of anoxygenic phototrophy in the bacterial phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol, 10.
    Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., 2016. The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess, 21(9), 1218–1230.
    Xie, L., Jakob, U., 2019. Inorganic polyphosphate, a multifunctional polyanionic protein scaffold. J Biol Chem, 294(6), 2180–2190.
    Yaakob, M.A., Mohamed, R.M.S.R., Al-Gheethi, A., Aswathnarayana Gokare, R., Ambati, R.R., 2021. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells, 10(2), 393.
    Yang, X., Dong, W., Liu, L., Bi, Y., Xu, W., Wang, X., 2023. Uncovering the differential growth of Microcystis aeruginosa cultivated under nitrate and ammonium from a photophysiological perspective. ACS ES&T Water, 3(4), 1161–1171.
    Yano, A., Cossu, M., 2019. Energy sustainable greenhouse crop cultivation using photovoltaic technologies. Renew Sustain Energy Rev, 109, 116–137.
    Yao, C., Jiang, J., Cao, X., Liu, Y., Xue, S., Zhang, Y., 2018. Phosphorus enhances photosynthetic storage starch production in a green microalga (chlorophyta) Tetraselmis subcordiformis in nitrogen starvation conditions. J Agric Food Chem, 66(41), 10777–10787.
    Ye, Q., Shen, Y., Zhang, Q., Wu, X., Guo, W., 2022. Life-cycle assessment of flue gas CO2 fixation from coal-fired power plant and coal chemical plant by microalgae. Sci Total Environ, 848, 157728.
    Yoro, K.O., Daramola, M.O., 2020. CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture (pp. 3–28). Elsevier.
    Zhang, Z., Guo, L., Liao, Q., Gao, M., Zhao, Y., Jin, C., She, Z., Wang, G., 2021. Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation. Bioresour Technol, 338, 125574.
    Zhao, B., Su, Y., 2014. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew Sustain Energy Rev, 31, 121–132.
    Zheng, Q., Xu, X., Martin, G.J.O., Kentish, S.E., 2018. Critical review of strategies for CO2 delivery to large-scale microalgae cultures. Chin J Chem Eng, 26(11), 2219–2228.
    Zhou, T., 2021. New physical science behind climate change: What does IPCC AR6 tell us? The Innov, 2(4), 100173.
    Zhou, Y., Li, X., Xia, Q., Dai, R., 2020. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation. Sci Total Environ, 700, 134501.
    Zuorro, A., Leal-Jerez, A.G., Morales-Rivas, L.K., Mogollón-Londoño, S.O., Sanchez-Galvis, E.M., García-Martínez, J.B., Barajas-Solano, A.F., 2021. Enhancement of phycobiliprotein accumulation in thermotolerant Oscillatoria sp. through media optimization. ACS Omega, 6(16), 10527–10536.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE