簡易檢索 / 詳目顯示

研究生: 江忠諺
Chiang, Chung-Yen
論文名稱: 以濕法冶金技術資源化硒化銅銦鎵殘靶
Recycling of spent CIGS sputtering targets by hydrometallurgy process
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 銅銦鎵硒殘靶酸蝕浸出黃銅礦結構奈米晶體回收技術
外文關鍵詞: CIGS target, leaching, chalcopyrite, nano-crystallites, recycling
相關次數: 點閱:135下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   硒化銅銦鎵(CuInxGa(1-x)Se2, CIGS)薄膜型太陽能電池是目前最先進的薄膜型太陽能電池之一,主要的製備方法為濺鍍法,然而濺鍍用靶材使用率僅約30%,仍有其餘70%是必須要回收再利用的,為了提升CIGS太陽能產業競爭力及資源永續之效,必須兼顧其經濟效益與提升其環保價值並降低環境污染。因此,建立CIGS殘靶回收技術是非常重要的。
      本研究於硫酸環境下通過常壓與高壓釜浸出硒化銅銦鎵殘靶並使用過氧化氫作為氧化劑,藉以獲得較高之硒化銅銦鎵回收率。並利用X光繞射儀與電子顯微鏡建立硒化銅銦鎵酸蝕反應之機構;過氧化氫與酸首先溶解硒化銅銦鎵表層,造成富銅硒化物生成並披覆於表面,而其分解速率則是酸蝕機構之速率決定步驟。本研究指出於溫度140℃硫酸濃度3M並添加過氧化氫作為氧化劑經反應4小時可得到99.9%的銅、銦、鎵回收率;另外,本研究亦透過焙燒-浸取製程可大幅提升浸漬效率,並將回收工藝結合再合成技術得到奈米級銅銦鎵硒粉體,可使其再次回用於市場供應鏈上,達到資源永續利用之目的。

    CIGS solar cell is the most advanced technology in solar industry. To make CIGS solar cells more competitive, both economic and eco-friendly options are needed. Hydrometallurgy is a promising way to recover the element from complex component due to its benefits of low energy cost, easy operation, selective and low pollution. In this study showed an alternative process of the combination of roasting and leaching method can significantly improve the recycling efficiency. Nearly complete CIGS dissolution can be obtained by autoclave leaching at 140oC for 4 h using 3 M sulfuric acid as the leaching agent and H2O2 as the oxidant. Then nano-sized CIGS powders can be obtained using the dissolved Cu, In, Ga solution as the raw materials and oleylamine (OLA) as a chelating agent by simple heating-up process. The result indicates that a direct recycling process combining leaching process and re-synthesis of CIGS nanoparticles can be used to recover CIGS materials for reinsertion into the CIGS supply chain.

    第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人研究與基礎理論 4 2-1 冶金的研究與發展 4 2-1.1 冶金的分類與優缺點 4 2-1.2 濕法冶金的發展與未來方向 5 2-2 銅、銦、鎵、硒與CIGS之回收 5 2-2-1 銅回收價值與意義 5 2-2-2 銦回收價值與意義 6 2-2-3 鎵回收價值與意義 6 2-2-4 硒回收價值與意義 7 2-2-5 硒化銅銦鎵廢棄靶材回收方法 7 2-3 黃銅礦溶解反應 8 2-3-1 黃銅礦晶體結構 8 2-3-2 黃銅礦浸漬的主要方法 9 2-3-3 溶解反應機構 12 2-4 浸取中鈍化層探討 16 2-4-1 黃銅礦硫酸浸取中鈍化層反應 16 2-4-2 硒化物硫酸浸取中鈍化層反應 19 2-5 難浸礦物預處理(pre-treatment)技術及其應用 22 2-5-1 預處理簡介 22 2-5-2 預處理方法的種類 23 2-5-3 黃銅礦的預處理簡介 25 2-5-4 硒化銅銦鎵的熱分析 28 2-6 銅銦鎵硒(CIGS)奈米粉體與靶材重製方法 29 2-6-1 硒化銅銦鎵(CuInxGa1-xSe2 , CIGS) 之優點 29 2-6-2 硒化銅銦鎵與硒化銅銦之合成方式 29 2-6-3 銅銦鎵硒四元濺鍍靶材 30 第三章 實驗步驟與分析方法 32 3-1實驗藥品 32 3-2實驗流程 33 3-2-1 CIGS四元靶材之酸蝕回收流程 33 3-2-2 二階段製程酸蝕CIGS回收程序 34 3-2-3 以直接升溫法重製硒化銅銦鎵奈米粉體 35 3-3 實驗分析方法 36 3-3-1 結晶相鑑定 ( X-Ray Diffraction ) 36 3-3-2 微結構分析 36 3-3-3 X-ray螢光成分分析(XRF) 36 3-3-4 液相元素濃度分析(ICP-MS) 36 3-3-5 熱穩定性分析(DTA) 37 第四章 結果與討論 38 4-1 銅銦鎵硒殘餘靶材物性分析 38 4-2 廢棄硒化銅銦鎵靶材溶蝕 40 4-2-1 常壓下硒化銅銦鎵廢棄靶材粉末溶解結果 40 4-2-2 加壓(Autoclave)對硒化銅銦鎵廢棄靶材粉末溶解之影響 45 4-3 酸蝕反應中鈍化層研究探討與反應機構整理 56 4-3-1 酸蝕反應中鈍化層探討 56 4-3-2 酸蝕反應機構整理 59 4-4 氧化焙燒預處理對硒化銅銦鎵回收之影響 61 4-4-1 氧化焙燒對硒化銅銦鎵之影響 61 4-4-2 氧化焙燒後粉末之浸漬反應 64 4-5 硒化銅銦鎵粉末重製 67 第五章 結論 72 參考文獻 73

    1. Yasuhiro Hashimoto, Takuya Satoh, andS. Shimakawa, “3rd World Conference on Photovoltaic Enero Convemion”, pp. 574-577. in., Japan, 2003.
    2. C. H. Fulton, “Principles of Metallurgy: An Introduction to the Metallurgy of the Metals”. McGraw-Hill book Company, (1910).
    3. 陳家鏞, 楊守志, 柯家駿, and毛銘華, “濕法冶金的研究與發展”. 冶金工業出版社: 北京, (1998).
    4. 王樹楷, “銦冶金”. 冶金工業出版社: 北京, (2007).
    5. 翟秀静 and 吕子剑, “鎵冶金”. 冶金工業出版社: 北京, (2010).
    6. 侯曉川, 肖連生, 張啟修, 沈裕軍, and彭俊,“硒的提取工艺研究现状及应用”, Rare Metals and Cemented Carbides, 40[2] 53-62 (2012).
    7. 光洋應用材料科技(股)公司, “銅銦鎵硒(CIGS)薄膜型太陽能電池之製程殘靶綜合回收技術先期研發計畫”. in., 2010.
    8. Y. Li, N. Kawashima, J. Li, A. P. Chandra, andA. R. Gerson,“A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite”, Advances in colloid and interface science, 197-198 1-32 (2013).
    9. J. C. Yannopoulos, J. C. Agarwal, andM. S. o. AIME., “Extractive Metallurgy of Copper: Pyrometallurgy and electrolytic refining”. The Society, (1976).
    10. J. D. Prater, Queneau, P.B,“The sulphation of copper-iron sulphides with concentrated sulphuric acid”, int.J.Metals, 22 23-27 (1970).
    11. G. M. Swinkels and R. M. G. S. Berezowski,“The Sherritt-Cominco Copper Process PART I: The Process”, CIM Bulletin, 71 105-121 (1978).
    12. D. Maurice and J. A. Hawk,“Simultaneous autogenous milling and ferric chloride leaching of chalcopyrite”, Hydrometallurgy, 51[3] 371-377 (1999).
    13. M. F. C. Carneiro and V. A. Leão,“The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate”, Hydrometallurgy, 87[3-4] 73-82 (2007).
    14. Bjorling.G,“A Nitric Acid Route in Combination with Solvent Extraction for. Hydrometallurgical Treatment of Chalcopyrite”, Extractive Metallurgy of Copper, 2 13 (1976).
    15. S. Prasad and B. D. Pandey,“Alternative processes for treatment of chalcopyrite —A review”, Minerals Engineering, 11[8] 763-781 (1998).
    16. D. S. Davies and R. E. Lueders,“Nitric-Sulphuric Leach Process Improvements,” Mining Engineering (1981).
    17. A. Vizsolyi, H. Veltman, I. H. Warren, andV. N. Mackiw,“Copper and elemental sulphur from chalcopyrite by pressure leaching.”, J. Met., 19[11] 52-59 (1967).
    18. B. M. Fisher,“Oxidation Leaching of Copper Concentrates for Production of Electrolytic Copper”, Extractive Metallurgy of Copper, 2 814-822 (1976).
    19. M. H. Stanczyk, C. Rampacek, A. University of, andS. United, “Oxidation leaching of copper sulfides in acidic pulps at elevated temperatures and pressures”, pp. 15 p. Bureau of Mines: [Washington, D.C.], (1963).
    20. J. E. Dutrizac,“The dissolution of chalcopyrite in ferric sulfate and ferric chloride media”, Metallurgical Transactions B, 12[2] 371-378 (1981).
    21. A. O. Adebayo, K. O. Ipinmoroti, andO. O. Ajayi,“Dissolution Kinetics of Chalcopyrite with Hydrogen Peroxide”, Chemical and Biochemical Engineering Quarterly, 17[3] (2003).
    22. S. Aydogan, G. Ucar, andM. Canbazoglu,“Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution”, Hydrometallurgy, 81[1] 45-51 (2006).
    23. M. M. Antonijević, Z. D. Janković, andM. D. Dimitrijević,“Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid”, Hydrometallurgy, 71[3-4] 329-334 (2004).
    24. D. Dreisinger,“A fundamental study of the reductive leaching of chalcopyrite using metallic iron part I : kinetic analysis”, Hydrometallurgy, 66[1-3] (2002).
    25. E. M. Córdoba, J. A. Muñoz, M. L. Blázquez, F. González, andA. Ballester,“Leaching of chalcopyrite with ferric ion. Part I: General aspects”, Hydrometallurgy, 93[3-4] 81-87 (2008).
    26. R. Padilla, P. Pavez, andM. C. Ruiz,“Kinetics of copper dissolution from sulfidized chalcopyrite at high pressures in H2SO4–O2”, Hydrometallurgy, 91[1-4] 113-120 (2008).
    27. R. P. Hackl, D. B. Dreisinger, E. Peters, andJ. A. King,“Passivation of chalcopyrite during oxidative leaching in sulfate media”, Hydrometallurgy, 39[1-3] 25-48 (1995).
    28. S. Aydogan,“Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium”, Chemical Engineering Journal, 123[3] 65-70 (2006).
    29. Y. L. Mikhlin, Y. V. Tomashevich, I. P. Asanov, A. V. Okotrub, V. A. Varnek, andD. V. Vyalikh,“Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions”, Applied Surface Science, 225[1-4] 395-409 (2004).
    30. M. M. Antonijević and G. D. Bogdanović,“Investigation of the leaching of chalcopyritic ore in acidic solutions”, Hydrometallurgy, 73[3-4] 245-256 (2004).
    31. A. Parker, C. Klauber, A. Kougianos, H. R. Watling, andW. van Bronswijk,“An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite”, Hydrometallurgy, 71[1-2] 265-276 (2003).
    32. Q. Yin, G. H. Kelsall, D. J. Vaughan, andK. E. R. England,“Atmospheric and electrochemical oxidation of the surface of chalcopyrite”, Geochimica et Cosmochimica Acta, 59[6] 1091-1100 (1995).
    33. D.J. Vaughan, U. Becker, andK. Wright,“sulphide mineral surfaces : theory and experiment”, International Journal of Mineral Processing, 51[1-4] 1-14 (1997).
    34. H. R. Watling,“Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options”, Hydrometallurgy, 140 163-180 (2013).
    35. D. W. Price and G. W. Warren,“The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid”, Hydrometallurgy, 15[3] 303-324 (1986).
    36. K.-b. Fu, H. Lin, X.-l. Mo, H. Wang, H.-w. Wen, andZ.-l. Wen,“Comparative study on the passivation layers of copper sulphide minerals during bioleaching”, Int J Miner Metall Mater, 19[10] 886-892 (2012).
    37. M. Mokmeli, B. Wassink, andD. Dreisinger,“Kinetics study of selenium removal from copper sulfate–sulfuric acid solution”, Hydrometallurgy, 139 13-25 (2013).
    38. Hou Xiao-chuan, Xiao Lian-sheng, Gao Cong-jie, Zhang Qi-xiu, Zhang Gui-qing, Cao Zuo-ying, andL. Qing-gang,“Thermodynamics and application of selenium reduction from leaching solution of smelting dust of Ni-Mo ore”, The Chinese Journal of Nonferrous Metals, 20[12] (2010).
    39. 周麗, 文書明, and李華偉,“難浸金礦預處理技術及其應用”, Metallic Ore Dressing Abroad, 3 9-12 (2004).
    40. M. Yuqun,“Experimental study on low temperature extrusive roast pretreatment of refractory gold concentrate followed by cyanide leaching”, Gold, 22[12] (2001).
    41. 钟平, 胡跃华, 黄桂萍, and黄振泉,“富氧浸出机理及其在氰化提金中的应用”, Nonferrous Metals Science and Engineering, 6 (1996).
    42. 谷晉川,“难选冶金矿石微波预处理研究”, 濕法冶金, 3 50-52 (1998).
    43. 孙宣,“微波炉加热预处理难浸金精矿”, 国外黄金参考, 03 36-41 (1998).
    44. T. K. Datta, N. Ghosh, R. Sen, andA. K. Dasgupta,“Pretreatment of chalcopyrite ore with alkali: A simple technique to improve the leaching mediated by thiobacillus ferrooxidans”, Minerals Engineering, 3[6] 641-644 (1990).
    45. G. Bayer and H. G. Wiedemann,“Thermal analysis of chalcopyrite roasting reactions”, Thermochimica Acta, 198[2] 303-312 (1992).
    46. A. D. Dalvi, R. Sridhar, andM. C. E. Bell, “Roast-leach copper recovery”. in. Google Patents, 1979.
    47. A. M. Gustafsson, M. R. Foreman, andC. Ekberg,“Recycling of high purity selenium from CIGS solar cell waste materials”, Waste management (2014).
    48. H. He, R. Orlando, M. Blanco, R. Pandey, E. Amzallag, I. Baraille, andM. Rérat,“First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases”, Physical Review B, 74[19] (2006).
    49. S. Ohira and N. Arai,“Wet chemical etching behavior of β-Ga2O3single crystal”, physica status solidi (c), 5[9] 3116-3118 (2008).
    50. T. Wada, H. Kinoshita, andS. Kawata,“Preparation of chalcopyrite-type CuInSe2 by non-heating process”, Thin Solid Films, 431-432 11-15 (2003).
    51. Z. Ning, Z. Da-Ming, andZ. Gong,“An investigation on preparation of CIGS targets by sintering process”, Materials Science and Engineering: B, 166[1] 34-40 (2010).
    52. Bin Li, Yi Xie, Jiaxing Huang, andY. Qian,“Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles”, Advanced Materials, 11 (1999).
    53. Y. G. Chun, K. H. Kim, andK. H. Yoon,“Synthesis of CuInGaSe2 nanoparticles by solvothermal route”, Thin Solid Films, 480-481 46-49 (2005).
    54. Qijie Guo, Suk Jun Kim, Mahaprasad Kar, William N. Shafarman, Robert W. Birkmire, Eric A. Stach, Rakesh Agrawal, andH. W. Hillhouse,“Development of a CuInSe2 Nanocrystal Ink for Low Cost Solar Cells”, Nano Letters, 8[9] 2982-2987 (2008).
    55. Matthew G Panthani, Vahid Akhavan, Brian Goodfellow, Johanna P Schmidtke, Lawrence Dunn, Ananth Dodabalapur, Paul F Barbara, andB. A. Korgel,“Synthesis of CulnS2, CulnSe2, and Cu(InxGa(1-x))Se2 (CIGS) nanocrystal "inks" for printable photovoltaics”, Journal of the American Chemical Society, 130[49] 16770-16777 (2008).
    56. K. Nose, Y. Soma, T. Omata, andS. Otsuka-Yao-Matsuo,“Synthesis of Ternary CuInS2Nanocrystals; Phase Determination by Complex Ligand Species”, Chemistry of Materials, 21[13] 2607-2613 (2009).
    57. “Hydrogen Peroxide”. in Material Safety Data Sheet, Vol. CAS. No. 07722-84-1. 勞工安全衛生研究所.
    58. W.-H. Hsu, H.-I. Hsiang, C.-T. Chia, andF.-S. Yen,“Controlling morphology and crystallite size of Cu(In0.7Ga0.3)Se2 nano-crystals synthesized using a heating-up method”, Journal of Solid State Chemistry, 208[0] 1-8 (2013).
    59. W.-H. Hsu, H.-I. Hsiang, F.-C. Yen, S.-C. Shei, andF.-S. Yen,“Low-temperature sintered CuIn0.7Ga0.3Se2 prepared by colloidal processing”, Journal of the European Ceramic Society, 32[14] 3753-3757 (2012).
    60. H.-I. Hsiang, W.-H. Hsu, L.-H. Lu, Y.-L. Chang, andF.-S. Yen,“Cuprous selenide nano-crystal synthesis and characterization”, Materials Research Bulletin, 48[2] 715-720 (2013).
    61. Z. Li, Ö. Kurtulus, N. Fu, Z. Wang, A. Kornowski, U. Pietsch, andA. Mews,“Controlled Synthesis of CdSe Nanowires by Solution–Liquid–Solid Method”, Advanced Functional Materials, 19[22] 3650-3661 (2009).

    下載圖示 校內:2019-08-14公開
    校外:2019-08-14公開
    QR CODE