簡易檢索 / 詳目顯示

研究生: 章哲維
Chang, Jhe-Wei
論文名稱: 雙重後修飾鑭系金屬離子及其光敏化劑於二維鋯基金屬有機骨架並應用於光致發光感測
Dual modifications of sensitizers and lanthanide ions on a two-dimensional zirconium-based metal–organic framework for photoluminescent detection
指導教授: 龔仲偉
Kung, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 131
中文關鍵詞: 二維金屬有機骨架鑭系金屬後修飾光感測鐵離子感測
外文關鍵詞: two-dimensional metal–organic framework, post-synthetic modification, lanthanide, photoluminescence, optical sensor
相關次數: 點閱:59下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架(Metal−organic frameworks, MOFs),由規律排列的金屬節點與有機連接器組合而成,是一種具有高度孔洞性及高比表面積的奈米孔洞材料,除此之外其結構具有高可調控性,且可透過官能基修飾改變其性質。得益於上述特性,MOF的發展備受關注,並應用於許多領域。本文內容將會討論MOF於光領域的應用,首先使用以六鋯金屬團簇為節點的鋯基金屬有機骨架(Zirconium-based MOF, Zr-MOF),並選擇具有二維結構的MOF,ZrBTB(BTB = 1,3,5-tri(4-carboxyphenyl)benzene),其水穩定性、良好分散性及二維結構使其特別適合在水溶液中進行光感測。ZrBTB在此做為固定化的平台,將具備獨特發光性質的鑭系金屬,鋱(Tb),與其光敏化劑兩階段地後修飾在ZrBTB上。以鑭系金屬做為發光中心,光敏化劑能夠幫助鑭系金屬吸光並傳遞能量至鑭系金屬,提升鑭系金屬的放光,此做法有望取代以Tb作為節點的Tb-MOF,並突破Zr-MOF的建構單元限制,其發光效率及吸光波長等可以不像以往被MOF的有機連接器限制,而可以挑選適合鋱金屬的有機配體做為光敏化劑,提升兩者間的能量傳遞效率或是使用對人體較友善的波長激發。最終,本文所合成的材料可以進行水中鐵離子(Fe3+)的光感測,並具有良好的選擇性及靈敏度。

    In this thesis, the structural and functional tunability of metal−organic frameworks (MOFs) is demonstrated and their applications in photoluminescent sensors would be explored.
    A two-dimensional (2D) zirconium-based metal–organic framework (Zr-MOF) with abundant terminal -OH/-OH2 groups on its nodes, ZrBTB (BTB = 1,3,5-tri(4-carboxyphenyl)benzene), is utilized as a platform for dual post-synthetic modifications (PSM) to immobilize both the benzophenone-based photosensitizer (benzophenone‐4,4’‐dicarboxylate, bzpdc) and terbium ions onto the 2D Zr-MOF molecular sheets. The loading of terbium ions on the Zr-MOF can be adjusted while preserving the loading of the photosensitizer. Since the installed bzpdc ligand can induce a highly efficient energy transfer to the neighbouring terbium ion upon excitation, the obtained material after dual PSM (ZrBTB-bzpdc-Tb-120) can show strong photoluminescent (PL) emissions of terbium ions upon the excitation of the bzpdc ligand at 355 nm, with a PL quantum yield of 5.04%. It is more advantageous than the 2D Zr-MOF solely functionalized with terbium ions, which can only exhibit similar emissions upon the excitation of the BTB linker at a less friendly wavelength of 310 nm, with a lower PL quantum yield of 2.94%. Owing to the high chemical stability as well as good dispersity of the ZrBTB-bzpdc-Tb-120 in water, its performances in selective PL sensing Fe(III) ions present in aqueous solutions are investigated.

    中文摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1 光學感測介紹 1 1-1-1 光致發光原理 1 1-1-2 分子間交互作用對光致發光的影響 5 1-1-3 光致發光感測 9 1-1-4 鑭系金屬(Lanthanide, Ln)的光物理特性 13 1-2 金屬有機骨架介紹 15 1-2-1 金屬有機骨架簡介 15 1-2-2 發光金屬有機骨架 17 1-2-3 鋯基金屬有機骨架 19 1-2-4 結合鑭系金屬之鋯基金屬有機骨架 21 1-3 後修飾金屬有機骨架的方法 25 1-3-1 天線效應與光敏化劑的選擇 25 1-3-2 後修飾方法:溶劑輔助配體結合法(Solvent-assisted ligand incorporation, SALI)及溶劑熱沉積法(Solvothermal deposition in MOFs, SIM) 27 1-4 研究動機 29 第二章 實驗方法與儀器介紹 31 2-1 實驗藥品與儀器設備介紹 31 2-1-1 實驗藥品 31 2-1-2 實驗儀器 34 2-2 實驗方法 36 2-2-1 二維金屬有機骨架ZrBTB之合成 36 2-2-2 後修飾光敏化劑於ZrBTB 37 2-2-3 後修飾鋱金屬離子於ZrBTB-bzpdc 37 2-2-4 材料鑑定 38 2-2-5 紫外-可見光漫反射光譜 39 2-2-6 光致發光(Photoluminescence, PL)實驗 40 2-2-7 鐵離子(Fe3+)感測實驗 41 2-2-8 選擇性測試 42 2-2-9 核磁共振實驗樣品製備 42 2-2-10 感應耦合電漿光學發射光譜樣品製備 42 第三章 結果與討論 44 3-1 材料鑑定 44 3-1-1 粉末X射線繞射圖譜(Powder X-ray diffraction patterns, XRD patterns) 44 3-1-2 掃描式電子顯微鏡圖(Scanning electron microscopic images, SEM images) 45 3-1-3 能量色散X射線光譜(Energy-dispersive X-ray spectroscopy, EDS) 46 3-1-4 穿透式電子顯微鏡圖(Transmission electron microscopic images, TEM images) 47 3-1-5 核磁共振(Nuclear magnetic resonance, NMR)及感應耦合電漿光學發射(Inductively coupled plasma-optical emission spectroscopy, ICP-OES)光譜分析 50 3-1-6 傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FTIR)及X射線光電子能譜(X-ray photoelectron spectroscopy, XPS) 56 3-1-7 氮氣吸脫附曲線(Nitrogen adsorption–desorption isotherms)及DFT孔徑分布圖 60 3-2 光學性質 64 3-2-1 紫外-可見光漫反射(Ultraviolet-visible diffuse reflectance spectroscopy, UV-Vis DRS)光譜 64 3-2-2 光致發光光譜(Photoluminescence spectra, PL spectra) 65 3-2-3 光致發光量子產率(Photoluminescence quantum yield, PLQY) 70 3-2-4 水穩定性測試 73 3-3 鐵離子(Fe3+)感測 75 3-3-1 金屬離子選擇性測試 75 3-3-2 鐵離子感測 76 3-3-3 鐵離子感測機制探討 81 第四章 結論 85 第五章 未來展望與建議 87 第六章 參考文獻 89 附錄:個人簡歷表 105

    [1] B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications, John Wiley & Sons, 2013.
    [2] A. J. Gomes, C. N. Lunardi, F. S. Rocha and G. S. Patience, Experimental methods in chemical engineering: Fluorescence emission spectroscopy. Can. J. Chem. Eng., 97, 2168-2175, 2019.
    [3] J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, 2006.
    [4] J. S. Wu, W. M. Liu, J. C. Ge, H. Y. Zhang and P. F. Wang, New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev., 40, 3483-3495, 2011.
    [5] K. P. Carter, A. M. Young and A. E. Palmer, Fluorescent sensors for measuring metal ions in living systems. Chem. Rev., 114, 4564-4601, 2014.
    [6] X. Chen, D. Peng, Q. Ju and F. Wang, Photon upconversion in core-shell nanoparticles. Chem. Soc. Rev., 44, 1318-1330, 2015.
    [7] X. Huang, S. Han, W. Huang and X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev., 42, 173-201, 2013.
    [8] D. Wu, A. C. Sedgwick, T. Gunnlaugsson, E. U. Akkaya, J. Yoon and T. D. James, Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev., 46, 7105-7123, 2017.
    [9] X. B. Chen, S. H. Shen, L. J. Guo and S. S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev., 110, 6503-6570, 2010.
    [10] H. Zhu, J. Fan, B. Wang and X. Peng, Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions. Chem. Soc. Rev., 44, 4337-4366, 2015.
    [11] J. X. Wang, J. Yin, O. Shekhah, O. M. Bakr, M. Eddaoudi and O. F. Mohammed, Energy Transfer in Metal-Organic Frameworks for Fluorescence Sensing. ACS Appl. Mater. Interfaces, 14, 9970-9986, 2022.
    [12] A. Shrivastava and V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 2011.
    [13] A. S. Tanwar, R. Parui, R. Garai, M. A. Chanu and P. K. Iyer, Dual “Static and Dynamic” fluorescence quenching mechanisms based detection of TNT via a cationic conjugated polymer. ACS Meas. Sci. Au, 2, 23-30, 2021.
    [14] J.-C. G. Bünzli and C. Piguet, Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev., 34, 1048-1077, 2005.
    [15] S. V. Eliseeva and J.-C. G. Bünzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev., 39, 189-227, 2010.
    [16] J. C. G. Bünzli, Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem. Rev., 110, 2729-2755, 2010.
    [17] D. E. Barry, D. F. Caffrey and T. Gunnlaugsson, Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem. Soc. Rev., 45, 3244-3274, 2016.
    [18] J. Zhou, Q. Liu, W. Feng, Y. Sun and F. Li, Upconversion luminescent materials: advances and applications. Chem. Rev., 115, 395-465, 2015.
    [19] D. N. Woodruff, R. E. P. Winpenny and R. A. Layfield, Lanthanide Single-Molecule Magnets. Chem. Rev., 113, 5110-5148, 2013.
    [20] Y. Cui, Y. Yue, G. Qian and B. Chen, Luminescent Functional Metal–Organic Frameworks. Chem. Rev., 112, 1126-1162, 2012.
    [21] Y. J. Cui, B. L. Chen and G. D. Qian, Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev., 273, 76-86, 2014.
    [22] H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 1230444, 2013.
    [23] A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater., 1, 15018, 2016.
    [24] O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin and J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc., 134, 15016-15021, 2012.
    [25] S. Kitagawa, R. Kitaura and S.-i. Noro, Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 43, 2334-2375, 2004.
    [26] S. M. Cohen, Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chem. Rev., 112, 970-1000, 2012.
    [27] S. Jeoung, S. Kim, M. Kim and H. R. Moon, Pore engineering of metal-organic frameworks with coordinating functionalities. Coord. Chem. Rev., 420, 213377, 2020.
    [28] U. Ryu, S. Jee, P. C. Rao, J. Shin, C. Ko, M. Yoon, K. S. Park and K. M. Choi, Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coord. Chem. Rev., 426, 213544, 2021.
    [29] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Metal-organic framework materials as catalysts. Chem. Soc. Rev., 38, 1450-1459, 2009.
    [30] T. Zhang and W. Lin, Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev., 43, 5982-5993, 2014.
    [31] A. Bavykina, N. Kolobov, I. S. Khan, J. A. Bau, A. Ramirez and J. Gascon, Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev., 120, 8468-8535, 2020.
    [32] A. H. Valekar, M. Lee, J. W. Yoon, J. Kwak, D.-Y. Hong, K.-R. Oh, G.-Y. Cha, Y.-U. Kwon, J. Jung, J.-S. Chang and Y. K. Hwang, Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification. ACS Catal., 10, 3720-3732, 2020.
    [33] X. Dong, Y. Li, D. Li, D. Liao, T. Qin, O. Prakash, A. Kumar and J. Liu, A new 3D 8-connected Cd(II) MOF as a potent photocatalyst for oxytetracycline antibiotic degradation. CrystEngComm, 24, 6933-6943, 2022.
    [34] C. Altintas, I. Erucar and S. Keskin, MOF/COF hybrids as next generation materials for energy and biomedical applications. CrystEngComm, 24, 7360-7371, 2022.
    [35] S. H. Park, R. A. Peralta, D. Moon and N. C. Jeong, Dynamic weak coordination bonding of chlorocarbons enhances the catalytic performance of a metal–organic framework material. J. Mater. Chem. A, 10, 23499-23508, 2022.
    [36] A. Sharma, S. Lee, J. Lim and M. S. Lah, Post-synthetic modifications in metal–organic frameworks for high proton conductivity. Bull. Korean Chem. Soc., 45, 145-156, 2024.
    [37] W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev., 46, 3242-3285, 2017.
    [38] I. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf and R. Ameloot, An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev., 46, 3185-3241, 2017.
    [39] M. G. Campbell and M. Dincă, Metal–Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors, 17, 1108, 2017.
    [40] C.-H. Chuang and C.-W. Kung, Metal−Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. Electroanalysis, 32, 1885-1895, 2020.
    [41] T. Wu, X.-j. Gao, F. Ge and H.-g. Zheng, Metal–organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects. CrystEngComm, 24, 7881-7901, 2022.
    [42] H. Q. Yin and X. B. Yin, Metal-Organic Frameworks with Multiple Luminescence Emissions: Designs and Applications. Acc. Chem. Res., 53, 485-495, 2020.
    [43] J. Rocha, L. D. Carlos, F. A. A. Paz and D. Ananias, Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem. Soc. Rev., 40, 926-940, 2011.
    [44] Y.-X. Sun, G. Guo, W.-M. Ding, W.-Y. Han, J. Li and Z.-P. Deng, A highly stable Eu-MOF multifunctional luminescent sensor for the effective detection of Fe3+, Cr2O72−/CrO42− and aspartic acid in aqueous systems. CrystEngComm, 24, 1358-1367, 2022.
    [45] M. Pan, W. M. Liao, S. Y. Yin, S. S. Sun and C. Y. Su, Single-Phase White-Light-Emitting and Photoluminescent Color Tuning Coordination Assemblies. Chem. Rev., 118, 8889-8935, 2018.
    [46] J. D. Xiao and H. L. Jiang, Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis. Acc. Chem. Res., 52, 356-366, 2019.
    [47] N. C. Burtch, H. Jasuja and K. S. Walton, Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev., 114, 10575-10612, 2014.
    [48] X. Jing, J. Liu, M. Guo, G. Chen, G. Ren, J. Li, H. Qin, Z. Yao, Y. Wan, W. Song, H. Zeng, F. Yang, D. Zhao and K. Hu, Facile synthesis of a fluorescent probe based on a terbium-based metal–organic framework for selective detection of Fe(III) and Al(III). New J. Chem., 47, 13619-13625, 2023.
    [49] Q. Yao, A. Bermejo Gómez, J. Su, V. Pascanu, Y. Yun, H. Zheng, H. Chen, L. Liu, H. N. Abdelhamid, B. Martín-Matute and X. Zou, Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chem. Mater., 27, 5332-5339, 2015.
    [50] S. Yuan, J.-S. Qin, C. T. Lollar and H.-C. Zhou, Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Cent. Sci., 4, 440-450, 2018.
    [51] S. Pal, S.-S. Yu and C.-W. Kung, Group 4 Metal-Based Metal—Organic Frameworks for Chemical Sensors. Chemosensors, 9, 306, 2021.
    [52] Z. Hu, Y. Wang and D. Zhao, The chemistry and applications of hafnium and cerium(IV) metal–organic frameworks. Chem. Soc. Rev., 50, 4629-4683, 2021.
    [53] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc., 130, 13850-13851, 2008.
    [54] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li and H. C. Zhou, Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater., 30, e1704303, 2018.
    [55] Y. Bai, Y. Dou, L. H. Xie, W. Rutledge, J. R. Li and H. C. Zhou, Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev., 45, 2327-2367, 2016.
    [56] Z. Chen, S. L. Hanna, L. R. Redfern, D. Alezi, T. Islamoglu and O. K. Farha, Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. Rev., 386, 32-49, 2019.
    [57] T. C. Wang, W. Bury, D. A. Gómez-Gualdrón, N. A. Vermeulen, J. E. Mondloch, P. Deria, K. Zhang, P. Z. Moghadam, A. A. Sarjeant, R. Q. Snurr, J. F. Stoddart, J. T. Hupp and O. K. Farha, Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. J. Am. Chem. Soc., 137, 3585-3591, 2015.
    [58] C. Jia, T. He and G.-M. Wang, Zirconium-based metal-organic frameworks for fluorescent sensing. Coord. Chem. Rev., 476, 214930, 2023.
    [59] L. Li, S. Shen, W. Ai, S. Song, Y. Bai and H. Liu, Facilely synthesized Eu3+ post-functionalized UiO-66-type metal-organic framework for rapid and highly selective detection of Fe3+ in aqueous solution. Sens. Actuators, B, 267, 542-548, 2018.
    [60] J.-f. Feng, S.-y. Gao, T.-f. Liu, J. Shi and R. Cao, Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing. ACS Appl. Mater. Interfaces, 10, 6014-6023, 2018.
    [61] J. Zhang, S. B. Peh, J. Wang, Y. Du, S. Xi, J. Dong, A. Karmakar, Y. Ying, Y. Wang and D. Zhao, Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe3+ in aqueous solution. Chem. Commun., 55, 4727-4730, 2019.
    [62] H. S. Jena, A. M. Kaczmarek, C. Krishnaraj, X. Feng, K. Vijayvergia, H. Yildirim, S.-N. Zhao, R. Van Deun and P. V. Der Voort, White Light Emission Properties of Defect Engineered Metal–Organic Frameworks by Encapsulation of Eu3+ and Tb3+. Cryst. Growth Des., 19, 6339-6350, 2019.
    [63] X. Zhang, W. Zhang, G. Li, Q. Liu, Y. Xu and X. Liu, A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridinedicarboxylic acid based on a terbium(III)− functionalized UIO-67 metal-organic framework. Microchim. Acta, 187, 122, 2020.
    [64] S. Kim, J. Lee, S. Jeoung, H. R. Moon and M. Kim, Dual-fixations of europium cations and TEMPO species on metal–organic frameworks for the aerobic oxidation of alcohols. Dalton Trans., 49, 8060-8066, 2020.
    [65] K. Yi, H. Li, X. Zhang and L. Zhang, Designed Tb(III)-Functionalized MOF-808 as Visible Fluorescent Probes for Monitoring Bilirubin and Identifying Fingerprints. Inorg. Chem., 60, 3172-3180, 2021.
    [66] X. Yue, L. Fu, J. Zhou, Y. Li, M. Li, Y. Wang and Y. Bai, Fluorescent and smartphone imaging detection of tetracycline residues based on luminescent europium ion-functionalized the regular octahedral UiO-66-NH2. Food Chem., 432, 137213, 2024.
    [67] H.-Q. Yuan, W. Li, Y.-F. Xia, S.-Y. Liu, Y.-F. Zhong, Z.-C. Dou, X. Wei, R. Wang, P. Chen, Y.-X. Li and G.-M. Bao, A recyclable Eu3+-functionalized dual-emissive metal–organic framework for portable, rapid detection and efficient removal of malachite green. Analyst, 149, 395-402, 2024.
    [68] Y. Wang, L. Feng, J. Pang, J. Li, N. Huang, G. S. Day, L. Cheng, H. F. Drake, Y. Wang, C. Lollar, J. Qin, Z. Gu, T. Lu, S. Yuan and H.-C. Zhou, Photosensitizer-Anchored 2D MOF Nanosheets as Highly Stable and Accessible Catalysts toward Artemisinin Production. Adv. Sci., 6, 1802059, 2019.
    [69] H. Yuan, G. Liu, Z. Qiao, N. Li, P. J. S. Buenconsejo, S. Xi, A. Karmakar, M. Li, H. Cai, S. J. Pennycook and D. Zhao, Solution-Processable Metal-Organic Framework Nanosheets with Variable Functionalities. Adv. Mater., 33, e2101257, 2021.
    [70] Z. Li, D. Zhan, A. Saeed, N. Zhao, J. Wang, W. Xu and J. Liu, Fluoride sensing performance of fluorescent NH2-MIL-53(Al): 2D nanosheets vs. 3D bulk. Dalton Trans., 50, 8540-8548, 2021.
    [71] H. Xu, J. Gao, X. Qian, J. Wang, H. He, Y. Cui, Y. Yang, Z. Wang and G. Qian, Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+. J. Mater. Chem. A, 4, 10900-10905, 2016.
    [72] J. Ma, A. G. Wong-Foy and A. J. Matzger, The Role of Modulators in Controlling Layer Spacings in a Tritopic Linker Based Zirconium 2D Microporous Coordination Polymer. Inorg. Chem., 54, 4591-4593, 2015.
    [73] Z. Hu, E. M. Mahdi, Y. Peng, Y. Qian, B. Zhang, N. Yan, D. Yuan, J.-C. Tan and D. Zhao, Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. J. Mater. Chem. A, 5, 8954-8963, 2017.
    [74] L. Feng, Y. Qiu, Q.-H. Guo, Z. Chen, J. S. W. Seale, K. He, H. Wu, Y. Feng, O. K. Farha, R. D. Astumian and J. F. Stoddart, Active mechanisorption driven by pumping cassettes. Science, 374, 1215-1221, 2021.
    [75] Y.-L. Chen, C.-H. Shen, C.-W. Huang and C.-W. Kung, Terbium-modified two-dimensional zirconium-based metal–organic frameworks for photoluminescent detection of nitrite. Mol. Syst. Des. Eng., 8, 330-340, 2023.
    [76] K. Binnemans, Lanthanide-based luminescent hybrid materials. Chem. Rev., 109, 4283-4374, 2009.
    [77] J.-C. Bünzli, Spectroscopic properties of rare earths in optical materials, Springer, 2005, pp. 462-499.
    [78] B. Yan, Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg. Chem. Front., 8, 201-233, 2021.
    [79] M. Baroncini, G. Bergamini and P. Ceroni, Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun., 53, 2081-2093, 2017.
    [80] A. M. Turek, G. Krishnamoorthy, K. Phipps and J. Saltiel, Resolution of Benzophenone Delayed Fluorescence and Phosphorescence with Compensation for Thermal Broadening. J. Phys. Chem. A, 106, 6044-6052, 2002.
    [81] W. N. Miao, B. Liu, H. Li, S. J. Zheng, H. Jiao and L. Xu, Fluorescent Eu3+/Tb3+ Metal-Organic Frameworks for Ratiometric Temperature Sensing Regulated by Ligand Energy. Inorg Chem, 61, 14322-14332, 2022.
    [82] Q. Xu, Z. Chen, H. Min, F. Song, Y. X. Wang, W. Shi and P. Cheng, Water Stable Heterometallic Zn-Tb Coordination Polymer for Rapid Detection of the Ultraviolet Filter Benzophenone. Inorg Chem, 59, 6729-6735, 2020.
    [83] Y. Shiraishi, Y. Furubayashi, G. Nishimura and T. Hirai, Sensitized luminescence of Eu and Tb macrocyclic complexes bearing benzophenone antennae. J. Lumin., 126, 68-76, 2007.
    [84] A. Beeby, L. M. Bushby, D. Maffeo and J. G. Williams, The efficient intramolecular sensitisation of terbium (III) and europium (III) by benzophenone-containing ligands. J. Chem. Soc., Perkin Trans. 2, 1281-1283, 2000.
    [85] W. W. Zhang, Y. L. Wang, Q. Liu and Q. Y. Liu, Lanthanide-benzophenone-3,3'-disulfonyl-4,4'-dicarboxylate Frameworks: Temperature and 1-Hydroxypyren Luminescence Sensing and Proton Conduction. Inorg Chem, 57, 7805-7814, 2018.
    [86] T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha and J. T. Hupp, Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Acc. Chem. Res., 50, 805-813, 2017.
    [87] P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies. J. Am. Chem. Soc., 135, 16801-16804, 2013.
    [88] H. Noh, Y. Cui, A. W. Peters, D. R. Pahls, M. A. Ortuno, N. A. Vermeulen, C. J. Cramer, L. Gagliardi, J. T. Hupp and O. K. Farha, An Exceptionally Stable Metal-Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation. J. Am. Chem. Soc., 138, 14720-14726, 2016.
    [89] R. Shimoni, Z. Shi, S. Binyamin, Y. Yang, I. Liberman, R. Ifraemov, S. Mukhopadhyay, L. Zhang and I. Hod, Electrostatic Secondary-Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO2 Reduction in a Fe-Porphyrin-Based Metal–Organic Framework. Angew. Chem. Int. Ed., 61, e202206085, 2022.
    [90] Z. Lu, J. Liu, X. Zhang, Y. Liao, R. Wang, K. Zhang, J. Lyu, O. K. Farha and J. T. Hupp, Node-Accessible Zirconium MOFs. J. Am. Chem. Soc., 142, 21110-21121, 2020.
    [91] C.-H. Shen, Y.-N. Chang, Y.-L. Chen and C.-W. Kung, Sulfonate-Grafted Metal–Organic Framework─A Porous Alternative to Nafion for Electrochemical Sensors. ACS Mater. Lett., 5, 1938-1943, 2023.
    [92] A. Mohmeyer, A. Schaate, B. Brechtken, J. C. Rode, D. P. Warwas, G. Zahn, R. J. Haug and P. Behrens, Delamination and Photochemical Modification of a Novel Two-Dimensional Zr-Based Metal-Organic Frameworks. Chem. Eur. J., 24, 12848-12855, 2018.
    [93] S. Yuan, J.-S. Qin, L. Zou, Y.-P. Chen, X. Wang, Q. Zhang and H.-C. Zhou, Thermodynamically Guided Synthesis of Mixed-Linker Zr-MOFs with Enhanced Tunability. J. Am. Chem. Soc., 138, 6636-6642, 2016.
    [94] J. Zhao, R. Chen, J. Huang, F. Wang, C. A. Tao and J. Wang, Facile Synthesis of Metal-Organic Layers with High Catalytic Performance toward Detoxification of a Chemical Warfare Agent Simulant. ACS Appl. Mater. Interfaces, 13, 40863-40871, 2021.
    [95] Y. L. Chen, D. Kurniawan, M. D. Tsai, J. W. Chang, Y. N. Chang, S. C. Yang, W. H. Chiang and C. W. Kung, Two-dimensional metal-organic framework for post-synthetic immobilization of graphene quantum dots for photoluminescent sensing. Commun. Chem., 7, 108, 2024.
    [96] M.-D. Tsai, Y.-L. Chen, J.-W. Chang, S.-C. Yang and C.-W. Kung, Sulfonate-Functionalized Two-Dimensional Metal–Organic Framework as a “Dispersant” for Polyaniline to Boost Its Electrochemical Capacitive Performance. ACS Appl. Energy Mater., 6, 11268-11277, 2023.
    [97] T. Hajiashrafi, M. Sheikholeslami, M. A. Arjanaki, S. Tarighi, Z. Guo and P. C. Junk, Synthesis, structure analysis and catalytic activity of two Ln-coordination polymers containing benzophenone-4,4'-dicarboxylate linker. New J. Chem., 47, 2230-2239, 2023.
    [98] K. I. Hadjiivanov, D. A. Panayotov, M. Y. Mihaylov, E. Z. Ivanova, K. K. Chakarova, S. M. Andonova and N. L. Drenchev, Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem. Rev., 121, 1286-1424, 2021.
    [99] J. Liu, Z. Li, X. Zhang, K.-i. Otake, L. Zhang, A. W. Peters, M. J. Young, N. M. Bedford, S. Letourneau, D. J. Mandia, J. W. Elam, O. K. Farha and J. T. Hupp, Introducing Nonstructural Ligands to Zirconia-Like MOF Nodes to Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catal., 9, 3198-3207, 2019.
    [100] H. Li, K. Gao, B. Mo, Q. Meng, K. Li, J. Wu and H. Hou, Construction of porous 2D MOF nanosheets for rapid and selective adsorption of cationic dyes. Dalton Trans., 50, 3348-3355, 2021.
    [101] Z. Liu, N. Li, P. Liu, Z. Qin and T. Jiao, Highly Sensitive Detection of Iron Ions in Aqueous Solutions Using Fluorescent Chitosan Nanoparticles Functionalized by Rhodamine B. ACS Omega, 7, 5570-5577, 2022.
    [102] X. Yu, A. A. Ryadun, D. I. Pavlov, T. Y. Guselnikova, A. S. Potapov and V. P. Fedin, Highly Luminescent Lanthanide Metal-Organic Frameworks with Tunable Color for Nanomolar Detection of Iron(III), Ofloxacin and Gossypol and Anti-counterfeiting Applications. Angew. Chem. Int. Ed., 62, e202306680, 2023.
    [103] X. Mi, D. Sheng, Y. e. Yu, Y. Wang, L. Zhao, J. Lu, Y. Li, D. Li, J. Dou and J. Duan, Tunable light emission and multiresponsive luminescent sensitivities in aqueous solutions of two series of lanthanide metal–organic frameworks based on structurally related ligands. ACS Appl. Mater. Interfaces, 11, 7914-7926, 2019.
    [104] Q.-Q. He, S.-L. Yao, T.-F. Zheng, H. Xu, S.-J. Liu, J.-L. Chen, N. Li and H.-R. Wen, A multi-responsive luminescent sensor based on a stable Eu (iii) metal–organic framework for sensing Fe3+, MnO4−, and Cr2O72− in aqueous solutions. CrystEngComm, 24, 1041-1048, 2022.
    [105] K.-Y. Wu, L. Qin, C. Fan, S.-L. Cai, T.-T. Zhang, W.-H. Chen, X.-Y. Tang and J.-X. Chen, Sequential and recyclable sensing of Fe3+ and ascorbic acid in water with a terbium(III)-based metal–organic framework. Dalton Trans., 48, 8911-8919, 2019.
    [106] M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing and Z. Sun, Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating terpyridine sites for Fe3+. ACS Appl. Mater. Interfaces, 5, 1078-1083, 2013.
    [107] Z.-D. Zhou, C.-Y. Wang, G.-S. Zhu, B. Du, B.-Y. Yu and C.-C. Wang, Water-stable europium (III) and terbium (III)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions. J. Mol. Struct., 1251, 132009, 2022.
    [108] X.-Y. Dong, R. Wang, J.-Z. Wang, S.-Q. Zang and T. C. Mak, Highly selective Fe3+ sensing and proton conduction in a water-stable sulfonate–carboxylate Tb–organic-framework. J. Mater. Chem. A, 3, 641-647, 2015.
    [109] M.-L. Han, G.-W. Xu, D.-S. Li, L. M. Azofra, J. Zhao, B. Chen and C. Sun, A Terbium-Organic Framework Material for Highly Sensitive Sensing of Fe3+ in Aqueous and Biological Systems: Experimental Studies and Theoretical Analysis. ChemistrySelect, 1, 3555-3561, 2016.
    [110] X. Yang, X. Lin, Y. Zhao, Y. S. Zhao and D. Yan, Lanthanide Metal-Organic Framework Microrods: Colored Optical Waveguides and Chiral Polarized Emission. Angew. Chem. Int. Ed., 56, 7853-7857, 2017.
    [111] Q. Zhang, J. Wang, A. M. Kirillov, W. Dou, C. Xu, C. Xu, L. Yang, R. Fang and W. Liu, Multifunctional Ln–MOF Luminescent Probe for Efficient Sensing of Fe3+, Ce3+, and Acetone. ACS Appl. Mater. Interfaces, 10, 23976-23986, 2018.
    [112] Y. Wang, X. Yang, C. Liu, Z. Liu, Q. Fang, F. Bai, S. Wang, X. Hou, B. Feng, B. Chen and B. Zou, Maximized Green Photoluminescence in Tb-Based Metal-Organic Framework via Pressure-Treated Engineering. Angew. Chem. Int. Ed., 61, e202210836, 2022.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE