| 研究生: |
古明祥 Ku, Ming-Hsiang |
|---|---|
| 論文名稱: |
摩擦攪拌7075鋁合金銲道延性脆化之微觀組織效應研究 Effects of Microstructural Factors on Ductile-to-Brittle Transition of Friction Stir Welded Zone of 7075 Aluminum Alloy |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 洪飛義 Hung, Fei-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 7075鋁合金 、摩擦攪拌銲接/製程 、微觀組織特徵 、拉伸性質 、熱處理 |
| 外文關鍵詞: | 7075 aluminum alloy, Friction stir weld/process, Microstructural characteristics, Tensile properties, Heat treatment |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
7075鋁合金目前廣泛運用在國防、航太與汽車等工業。但是,其銲接性與成型性不佳,需要克服許多相關問題。因此,為了提升以及改善7075鋁合金的銲接性與成型性,本研究導入摩擦攪拌銲接製程,探討7075鋁合金壓延板材摩擦攪拌前後的微觀組織特徵與拉伸性質,評估摩擦攪拌接合程度,用以取代傳統熔融銲接。此外,從攪拌材的拉伸破斷位置結果發現,其受到迴轉速效應影響很大。因此,本研究也利用一系列迴轉速 (440 rpm-1670 rpm)進行摩擦攪拌製程與其後續時效熱處理,探討入熱量、塑性流動與人工時效對攪拌區造成微觀組織的變化,以釐清摩擦攪拌材的常溫拉伸性質。另外,為了提升拉伸延性與加工硬化率,本研究以固溶化熱處理 (W)與摩擦攪拌製程對7075鋁合金進行微觀組織與拉伸變形行為的調查,並與完全退火材 (O材)進行相關性質比較。
研究結果發現,經過摩擦攪拌銲接後,攪拌區 (Stir zone, SZ)的組織呈現細化等軸晶粒;即使經過T6熱處理,其晶粒形貌並無明顯變化。從硬度與拉伸性質可得知,攪拌過後的拉伸強度嚴重劣化,經過T6熱處理可恢復至母材的水準。另外,由於迴轉速效應的影響,使得低轉速到高轉速的破斷位置由熱影響區 (Heat affect zone, HAZ)轉變成在SZ發生,而且延性下降至5%左右。
針對攪拌區進行一系列迴轉速 (440 rpm-1670 rpm)與後續熱處理。結果顯示,攪拌區內出現沿著摩擦攪拌方向排列的第二相顆粒團聚;然而,在高迴轉速的試片觀察到不均勻元素分佈、不連續的第二相顆粒與微孔洞排列以及摩擦攪拌誘發之金屬流紋帶 (Friction stir induced metal flow band, FSIB)。從拉伸測試可得知,低迴轉速 (1230 rpm以下)延性上升;高迴轉速 (1450 rpm-1670 rpm)延性受到不均勻元素分佈、不連續的第二相顆粒與微孔洞排列、FSIB以及析出相而脆化。
將FSP-W (攪拌材經過W熱處理)、7075-W材 (母材經過W熱處理)與7075-O材 (母材經過完全退火)比較,得知固溶化程度愈大以及晶粒細化將造成材料拉伸延性大幅提升 (可達40%以上),且加工硬化率也提高,進而改善成型性,有利於塑性加工。
綜合上述結果,7075鋁合金經過適當的摩擦攪拌參數 (迴轉速在1230 rpm 以下)與後續熱處理 (固溶化熱處理),可有效接合並且大幅提升其延展性與加工成型性,可應用於需要接合與成型的工業需求上。
In this study, the friction stir weld (FSW) and friction stir process (FSP) for 7075 aluminum alloy were used. And the microstructural characteristics and tensile properties after post process heat treatment were investigated and evaluated the performance of the friction stir weld, tensile deformation behaviors and ductility enhancement. The experimental results indicated that the average grain size after natural aging in the SZ displayed slight change from 440 rpm to 1670 rpm. The tensile strength of 7075 aluminum alloy deteriorated after FSW, showed improvement after T6 heat treatment. In addition, the fracture location changed from the heat affected zone (HAZ) to stir zone (SZ) as rotational speed increased from 1230 rpm to 1670 rpm. The FSP specimens with higher rotational speed (1450 rpm-1670 rpm) after aging treatment suffered from brittleness owing to friction stir induced metal flow band (FSIB), discontinuous arrangement assembled by second phase particles and micro voids and precipitates.
[1] E.A. Starke Jr, J.T. Staley, Application of modern aluminum alloys to aircraft, Prog. Aerospace Sci. 32 (1996) 131-172.
[2] J. Liu, Advanced aluminum and hybrid aerostructures for future aircraft, Mater. Sci. Forum. 519 (2006) 1233-1238.
[3] R. Rajan, P. Kah, B. Mvola, J. Martikainen, Trends in aluminium alloy development and their joining methods, Rev. Adv. Mater. Sci. 44 (2016) 383-397.
[4] G.M. Reddy, A.A. Gokhale, K.P. Rao, Weld microstructure refinement in a 1441 grade aluminium-lithium alloy, J. Mater. Sci. 32 (1997) 4117-4126.
[5] W.M. Thomas, E.D. Nicholas, J.D. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, B.G. Patent Application No. 9125978.8, (1991).
[6] R.S. Mishra, M.W. Mahoney, Friction stir welding and processing, ASM International, Ohio/USA, (2007) 309-350.
[7] K.V. Jata, S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Mater. 8 (2000) 743-749.
[8] M. Moghaddam, A. Zarei-Hanzaki, M. Pishbin, A. Shafieizad, V. Oliveira, Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation, Mater. Charact. 119 (2016) 137-147.
[9] W. Zhang, H. Ding, M. Cai, W. Yang, J. Li, Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti-6Al-4V alloy, Metall. Mater. Trans. A. 727 (2018) 90-96.
[10] Z.Y. Ma, Friction stir processing technology: a review, J. Metall. Mater. Trans. A. 39 (2008) 642-658.
[11] M.H. Ku, F.Y. Hung, T.S. Lui, L.H. Chen, W.T. Chiang, Microstructural effects of Zn/Mg ratio and post heat treatment on tensile properties of friction stirred process (FSP) Al-xZn-yMg Alloys, Mater. Trans. 53 (2012) 995-1001.
[12] C.G. Rhodes, M.W. Mahoney, W.H. Bingel, M. Calabrese, Fine-grain evolution in friction-stir processed 7050 aluminum, Scripta Mater. 48 (2003) 1451-1455.
[13] J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta Mater. 51 (2003) 713-729.
[14] M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, W.H. Bingel, R.A. Spurling, Properties of friction-stir-welded 7075 T651 aluminum, J. Metall. Mater. Trans. A. 29 (1998) 1955-1964.
[15] P. Cavaliere, A. Squillace, High temperature deformation of friction stir processed 7075 aluminium alloy, Mater. Charact. 55 (2005) 136-142.
[16] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplastic deformation behaviour of friction stir processed 7075Al alloy, Acta Mater. 50 (2002) 4419-4430.
[17] R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scripta Mater. 42 (1999) 163-168.
[18] K. Elangovan, V. Balasubramanian, Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy, Mater.Sci. Eng. A. 459 (2007) 7-18.
[19] M.H. Ku, F.Y. Hung, T.S. Lui, L.H. Chen, Embrittlement mechanism on tensile fracture of 7075 Al Alloy with friction stir process (FSP), Mater. Trans. 52 (2011) 112-117.
[20] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints, Mater. Des. 32 (2011) 535-549.
[21] B. Yang, J. Yan, M.A. Sutton, A.P. Reynolds, Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies, Mater.Sci. Eng. A. 364 (2004) 55-65.
[22] 賴俊志,"高溫人工時效處理對7075鋁合金拉伸延性之影響及可靠度研究",國立成功大學材料科學及工程學系碩士論文,民國103年。
[23] A. Deschamps, M. Niewczas, F. Bley, Y. Brechet, J.D. Embury, L. Le Sinq, F. Livet, J.P. Simon, Low-temperature dynamic precipitation in a supersaturated Al-Zn-Mg alloy and related strain hardening, Philos. Mag. A. 79 (1999) 2485-2504.
[24] W.J. Kim, C.S. Chung, D.S. Ma, S.I. Hong, H.K. Kim, Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging, Scripta Mater. 49 (2003) 333-338.
[25] S.T. Chen, T.S. Lui, L.H. Chen, Examination of the tensile deformation resistance and ductility of friction stir processed Al-Cu 2218 alloy at elevated temperatures, Mater. Trans. 51 (2010) 1474-1480.
[26] C.Y. Lin, T.S. Lui, L.H. Chen, Microstructural variation and tensile properties of a cast 5083 aluminum plate via friction stir processing, Mater. Trans. 50 (2009) 2801-2807.
[27] L. Hadjadj, R. Amira, The effect of Cu addition on the precipitation and redissolution in Al–Zn–Mg alloy by the differential dilatometry, J. Alloys Compd. 484 (2009) 891-895.
[28] X.J. Jiang, B. Noble, V. Hansen, J. Tafto, Influence of zirconium and copper on the early stages of aging in Al-Zn-Mg alloys, Metall. Mater. Trans. A. 32 (2001) 1063-1073.
[29] T.H. Sanders, E.A. Starke, The relationship of microstructure to monotonic and cyclic straining of two age hardening aluminum alloys, J. Metall. Mater. Trans. A. 7 (1976) 1407-1418.
[30] S.P Dong, W.N. Soo, Effects of manganese dispersoid on the mechanical properties in Al-Zn-Mg alloys, J. Mater. Sci. 30 (1995) 1313-1320.
[31] J.E. Hatch, Aluminum properties and physical metallurgy, American Society for Metals, Metals Park, Ohio, (1984) 136-137.
[32] M. Conserva, E. Di Russo, O. Caloni, Comparison of the influence of chromium and zirconium on the quench sensitivity of Al-Zn-Mg-Cu alloys, J. Metall. Mater. Trans. A. 2 (1971) 1227-1232.
[33] L. Zou, Q.L. Pan, Y.B. He, C.Z. Wang, W.J. Liang, Effect of minor Sc and Zr addition on microstructures and mechanical properties of Al-Zn-Mg-Cu alloys, Trans. Nonferrous Met. Soc. China 17 (2007) 340-345.
[34] L.F. Mondolfo, N.A. Gjostein, D.W. Levinson, Structural changes during the aging in an Al-Mg-Zn alloy, JOM 8 (1956) 1378-1385.
[35] S. Mironov, Y.S. Sato, H. Kokawa, H. Inoue, S. Tsuge, Structural response of superaustenitic stainless steel to friction stir welding, Acta Mater. 59 (2011) 5472-5481.
[36] 李信委,"摩擦攪拌製程對AZ31鎂合金擠型材微觀組織及拉伸性質之影響",國立成功大學材料科學及工程學系博士論文,民國101年。
[37] 林春億,"摩擦攪拌製程及後續加熱對Al-5Mg-0.6Mn合金微觀組織與常溫拉伸性質之影響",國立成功大學材料科學及工程學系博士論文,民國103年。
[38] L. Fratini, G. Buffa, CDRX modelling in friction stir welding of aluminium alloys, Int. J. Mach. Tools Manuf. 45 (2005) 1188-1194.
[39] C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, C.C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum, Scripta Mater. 36 (1997) 69-75.
[40] Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, T. Hashimoto, Precipitation sequence in friction stir weld of 6063 aluminum during aging, Metall. Mater. Trans. A. 30 (1999) 3125-3130.
[41] 黃展鴻,"摩擦攪拌7075鋁合金組織特性及拉伸性質之後熱處理效應探討",國立成功大學材料科學及工程學系碩士論文,民國96年。
[42] E. B. F. Lima, J. Wegener, C. Dalle Donne, G. Goerigk, T. Wroblewski, T. Buslaps, A.R. Pyzalla, W. Reimers, Dependence of the microstructure, residual stresses and texture of AA 6013 friction stir welds on the welding proces, Int. J. Mater. Res. Adv. Tech. 94 (2003) 908-915.
[43] A. Oosterkamp, L. Djapic Oosterkamp, A. Nordeide, Kissing bond phenomena in solid state welds of aluminum alloys, Weld J. 83 (2004) 225-231.
[44] Y. Chen, H. Liu, J. Feng, Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates, Mater. Sci. Eng. A. 420 (2006) 21-25.
[45] K. Elangovan, V. Balasubramanian, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy, Mater. Des. 29 (2008) 362-373.
[46] Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Mater. Sci. Eng. A. 415 (2006) 250-254.
[47] Ø. Frigaard, Ø. Grong, O.T. Midling, Modelling of heat flow phenomena in friction stir welding of aluminium alloys, In Proceedings of the Seventh International Conference Joints in Aluminum - INALCO ’98, Cambridge, UK, (1998) 15-17.
[48] S. Rajakumar, V. Balasubramanian, Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters, Mater. Des. 40 (2012) 17-35.
[49] V.F. Olga, Microstructural issues in a friction-stir-welded aluminum alloy, Scripta mater. 38 (1998) 703-708.
[50] J.H. Ouyang, J. D., R. Kovacevic, M. Song, M. Valantm, Visualization of material flow during friction stir welding (FSW) of the same and dissimilar aluminum alloys, 6th International trends in welding rescarch conference proceedings, (2002) 229-240.
[51] L. Cederqvist, A.P. Reynolds, Factors affecting the properties of friction stir welded aluminum lap joints, Welding J. 80 (2001) 281-287.
[52] C.W. Lin, F.Y. Hung, T.S. Lui, L.H. Chen, Weibull statistics of tensile-shear strength of 5083 aluminum alloy after friction stir spot welding, Mater. Trans. 56 (2015) 54-60.
[53] G. Buffa, L. Fratini , B. Arregi, M. Penalva, A new friction stir welding based technique for corner fillet joints: experimental and numerical study, Int. J. Mater. Form. 3 (2010) 1039-1042.
[54] N.S. Lee, J.H. Chen, P.W. Kao, L.W. Chang, T.Y. Tseng, J.R. Sub, Anisotropic tensile ductility of cold-rolled and annealed aluminum alloy sheet and the beneficial effect of post-anneal rolling, Scripta Mater. 60 (2009) 340-343.
[55] R. Narayanasamy, R. Ravindran, K. Manonmani, J. Satheesh, A crystallographic texture perspective formability investigation of aluminium 5052 alloy sheets at various annealing temperatures, Mater. Des. 30 (2009) 1804-1817.
[56] M. Tajally, E. Emadoddin, Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets, Mater. Des. 32 (2011) 1594-1599.
[57] 劉柏志,"7075與A356鋁合金異質摩擦攪拌銲接後之微觀組織及拉伸性質研究",國立成功大學材料科學與工程學系碩士論文,民國98年。
[58] R.K. Gupta, P. Ramkumar, B.R. Ghosh, Investigation of internal cracks in aluminium alloy AA7075 forging, Eng. Fail. Anal. 13 (2006) 1-8.
[59] V. Balasubramanian, V. Ravisankar, G.M. Reddy, Effect of post weld aging treatment on fatigue behavior of pulsed current welded AA7075 aluminum alloy joints, J. Mater. Eng. Perform. 7 (2008) 224-233.
[60] Y. Li, L.E. Murr, J.C. McClure, Flow visualization and residual microstructures associated with the friction stir welding of 2024 aluminum to 6061 aluminum, Mater. Sci. Eng. A. 271 (1999) 213-223.
[61] P.N.T. Unwin, R.B. Nicholson, The nucleation and initial stages of growth of grain boundary precipitates in Al-Zn-Mg and Al-Mg alloys, Acta Metall. 17 (1969) 1379-1393.
[62] J.K. Park, A.J. Ardell, Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651, Metall. Mater. Trans. A. 15 (1984) 1531-1543.
[63] J. O˜noro, The stress corrosion cracking behaviour of heat-treated Al-Zn-Mg-Cu alloy in modified salt spray fog testing, Mater. Corros. 61 (2010) 125-129.
[64] R.C. Dorward, H.K. R., Flaw growth of 7075, 7475, 7050 and 7049 aluminum plate in stress corrosion environments, Final NASA Report Contact No. NAS8-30896, (1976) 1-33.
[65] W. Gruhl, Stress corrosion cracking of high strength aluminum alloys, Z. Metallkd. 75 (1984) 819-826.
[66] J.K. Park, Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6, Mater. Sci. Eng. A. 103 (1988) 223-231.
[67] S. Nagarjuna, M. Srinivas, K. Balasubramanian, D.S. Sarma, Effect of modulations on yield stress and strain hardening exponent of solution treated Cu-Ti alloys, Scripta Mater. 38 (1998) 1469-1474.
[68] L.M. Cheng, W.J. Poole, J.D. Embury, D.J. Lloyd, The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030, Metall. Mater. Trans. A. 34 (2003) 2473-2481.
[69] J. Sessler, V. Welss, "Materials data book: aluminum alloy 7075", NASA, Ala, USA, Chap. 3, (1966) 10.
[70] M. Tajally, Z. Huda, H.H. Masjuki, A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy, Int. J. Impact Eng. 37 (2010) 425-432.
[71] X.M. Li, M.J. Starink, DSC study on phase transitions and their correlation with properties of overaged Al-Zn-Mg-Cu alloys, J. Mater. Eng. Perform. 21 (2012) 977-984.
[72] D.K. Xu, P.A. Rometsch, N. Birbilis, Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part II. Microstructure and mechanical properties, Mater. Sci. Eng. A. 534 (2012) 244-252.
[73] D.K. Xu, P.A. Rometsch, N. Birbilis, Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part I. Characterisation of constituent particles and overheating, Mater. Sci. Eng. A. 534 (2012) 234-243.
[74] 黎寓庭,"退火與固溶化處理對7001鋁合金管材的微觀組織與拉伸性質之影響",國立成功大學材料科學及工程學系碩士論文,民國104年。
[75] A.H. Cottrell, A note on the Portevin-Le Chatelier effect, Phil. Mag. A. 44 (1953) 829-832.
[76] A.H. Cottrell, M.A. Jaswon, Distribution of solute atoms round a slow dislocation, P. Roy. Soc. Lond, A Mat. 199 (1949) 104-114.
[77] Y. Bergström, W. Roberts, The application of a dislocation model to dynamical strain aging in α-iron containing interstitial atoms, Acta Metall. 19 (1971) 815-823.
[78] P.G. McCormick, The Portevin-Le Chaterlier effect in an Al-Mg-Si alloy, Acta Metall. 19 (1971) 463-471.
[79] W. Wen, J.G. Morris, An investigation of serrated yielding in 5000 series aluminum alloys, Mater. Sci. Eng. A. 354 (2003) 279-285.
[80] M.C. Chen, L.H. Chen, T.S. Lui, Vacancy concentration in strain ageing of substitutional fcc alloys, J. Mater. Sci. 28 (1993) 3329-3334.
[81] M.C. Chen, L.H. Chen, T.S. Lui, Analysis on the critical strain associated with the onset of Portevin-Le Chatelier effect of substitutional F.C.C. alloys, Acta Metall. 40 (1992) 2433-2438.
[82] M.C. Chen, L.H. Chen, T.S. Lui, A modification on the Portevin-Le Chatelier effect of substitutional FCC alloys, Scripta Mater. 23 (1989) 655-658.
[83] F.L. Châtelier, A. Portevin, Sur le Phénomène Observé lors de l’essai de traction d’alliages en cours de transformation, C. R. Acad. Sci. Paris 176 (1923) 507-510.
[84] Y. Bergström, W. Roberts, A dislocation model for dynamical strain ageing of α-Iron in the jerky-flow region, Acta Metall. 19 (1971) 1243-1251.
[85] D.J. Dingley, D. McLean, Components of the flow stress of Iron, Acta Metall. 15 (1967) 885-901.
[86] F.L. Châtelier, Influence du temps et de la temperature sur les essais au choc, Revue de métallurgie 6 (1909) 914-917.
[87] K. Chihab, C. Fressengeas, Time distribution of stress drops, critical strain and crossover in the dynamics of jerky flow, Mater. Sci. Eng. A. 356 (2003) 102-107.
[88] E. Pink, A. Grinberg, Stress drop in serrated flow curves of Al5Mg, Acta Metall. 30 (1982) 2153-2163.
[89] D. Thevenet, M. Mliha-Touati, A. Zeghloul, The effect of precipitation on the Portevin-Le Chatelier effect in an Al-Zn-Mg-Cu alloy, Mater. Sci. Eng. A. 266 (1999) 175-182.
[90] Y. Estrin, M.A. Lebyodkin, The influence of dispersion particles on the Portevin-Le Chatelier effect: from average particle characteristics to particle arrangement, Mater. Sci. Eng. A. 387-389 (2004) 195-198.
[91] 陳錦修,"兩相共晶鋁合金213K至673K之拉伸特性研究",國立成功大學礦冶及材料科學系博士論文,民國85年。
[92] L. Sun, Q. Zhang, H. Jiang, Effect of solute concentration on portevin-Le chatelier effect in Al-Cu alloys, Front. Mater. Sci. China. 1 (2007) 173-176.
[93] Y. Cai, S. Yang, S. Fu, D. Zhang, Q. Zhang, Investigation of Portevin–Le Chatelier band strain and elastic shrinkage in Al-based alloys associated with Mg contents, J. Mater. Sci. Technol. 33 (2017) 580-586.
[94] Y.L. Cai, S.L. Yang, S.H. Fu, Q.C. Zhang, The influence of specimen thickness on the Lüders effect of a 5456 Al-based alloy: experimental observations, Metals 6 (2016) 1-12.
[95] T.A. Lebedkina, M.A. Lebyodkin, T.T. Lamark, M. Janeček, Y. Estrin, Effect of equal channel angular pressing on the Portevin–Le Chatelier effect in an Al3Mg alloy, Mater. Sci. Eng. A. 615 (2014) 7-13.
[96] J. Coër, P.Y. Manach, H. Laurent, M.C. Oliveira, L.F. Menezes, Piobert–Lüders plateau and Portevin–Le Chatelier effect in an Al–Mg alloy in simple shear, Mech. Res. Commun. 48 (2013) 1-7.
[97] W. Wen, J.G. Morris, The effect of cold rolling and annealing on the serrated yielding phenomenon of AA5182 aluminum alloy, Mater. Sci. Eng. A. 373 (2004) 204-216.
[98] Y.S. Sato, Y. Sugiura, Y. Shoji, S.H.C. Park, H. Kokawa, K. Ikeda, Post-weld formability of friction stir welded Al alloy 5052, Mater. Sci. Eng. A. 369 (2004) 138-143.
[99] K.S. Chan, L.H. Chen, T.S. Lui, The effect of particles on the critical strain associated with the Portevin-LeChatelier effect in aluminium alloys, J. Mater. Sci. 30 (1995) 212-218.
[100] J.Z. Chen, L. Zhen, L.W. Fan, S.J. Yang, S.L. Dai, W.Z. Shao, Portevin-Le Chatelier effect in Al-Zn-Mg-Cu-Zr aluminum alloy, Trans. Nonferrous. Met. Soc. China. 19 (2009) 1071-1075.
[101] E. Pink, The effect of precipitates on characteristics of serrated flow in AlZn5Mg1, Acta Metall. 37 (1989) 1773-1781.
[102] C. Wang, Z. Li, Y. Xu, E. Han, Acoustic emission inspection of Portevin-Le Chatelier effect and deformation mechanisms of two Mg-Li-Al alloys, J. Mater. Sci. 42 (2007) 3573-3579.
[103] J. Kang, R.K. Mishra, D.S. Wilkinson, O.S. Hopperstad, Effect of Mg content on Portevin-Le Chatelier band strain in Al-Mg sheet alloys, Phil. Mag. Lett. 92 (2012) 647-655.
[104] J.J. Giiman, Dislocation mobility in crystals, J. Appl. Phys. 36 (1965) 3195-3206.
[105] D.J. Lloyd, P.J. Worthington, L.D. Embury, Dislocation dynamics in the copper-tin system, Phil. Mag. 21 (1970) 1147-1160.
[106] 徐堅銘,"粗大硬質第二相對鋁合金動態應變時效影響之研究",國立成功大學礦冶及材料科學系碩士論文,民國81年。
[107] S. Miura, H. Yamauchi, Influence of grain size on the Portevin-LeChatelier effect in Al-Mg alloys, Mater. Trans. 13 (1972) 82-88.
[108] W. Charnock, The influence of grain size on the nature of Protevin-LeChatelier yielding, Phil. Mag. 18 (1968) 89-99.
[109] P. O'Connor, A. Kleyner, "Practical reliability engineering", John Wiley & Sons, Chichester, West Sussex, UK, Chap. 1 (2012) 1-18.
[110] A.J. Verma, S. Ajit, D.R. Karanki, "Reliability and safety engineering", Springer, 2nd ed., Chap.1 (2015) 1-15.
[111] W. Weibull, S. Sweden, A statistical distribution function of wide applicability, J. Appl. Mech. 18 (1951) 293-297.
[112] P.S. Effertz, V. Infante, L. Quintino, U. Suhuddin, S. Hanke, J.F. dos Santos, Fatigue life assessment of friction spot welded 7050-T76 aluminium alloy using Weibull distribution, Int. J. Fatigue. 87 (2016) 381-390.
[113] H.J. Sohn, G.D. Haryadi, S.J. Kim, Statistical aspects of fatigue crack growth life of base metal, weld metal and heat affected zone in FSWed 7075-T651aluminum alloy, J. Mech. Sci. Technol. 28 (2014) 3957-3962.
[114] M. Tiryakioğlu, J. Campbell, Weibull analysis of mechanical data for castings: a guide to the interpretation of probability plots, Metall. Mater. Trans. A. 41 (2010) 3121-3129.
[115] I. Charita, R.S. Mishra, Abnormal grain growth in friction stir processed alloys, Scripta Mater. 58 (2008) 367-371.
[116] B. Fraucher, W.R. Tyson, On the determination of Weibull parameters, J. Mater. Sci. Lett. 7 (1988) 1199-1203.
[117] D.J. Inman, C.R. Farrar, V.L. Junior, V.S. Junior, "Damage prognosis: for aerospace, civil and mechanical systems, Jonh Wiley & Sons, Chichester, West Sussex, UK, Chap. 19 (2005) 385-419.
[118] M.H. Ku, F.Y. Hung, T.S. Lui, J.J. Lai, Enhanced formability and accelerated precipitation behavior of 7075 Al alloy extruded rod by high temperature aging, Metals 8 (2018) 1-14.
[119] J.A. Wert, Identification of precipitates in 7075 Al after high-temperature aging, Scripta Metall. 15 (1981) 445-447.
[120] J.D. Embury, R.B. Nicholson, The nucleation of precipitates: The system Al-Zn-Mg, Acta Metall. 13 (1965) 403-417.
[121] M. Mazière, C. Luis, A. Marais, S. Forest, M. Gaspérini, Experimental and numerical analysis of the Lüders phenomenon in simple shear, Int. J. Solids Struct. 106-107 (2017) 305-314.
[122] H. Zhong, P.A. Rometsch, Q. Zhu, L. Cao, Y. Estrin, Effect of pre-ageing on dynamic strain ageing in Al-Mg-Si alloys, Mater. Sci. Eng. A. 687 (2017) 323-331.
[123] Y.L. Chang, F.Y. Hung, T.S. Lui, Enhancing the tensile yield strength of A6082 aluminum alloy with rapid heat solutionizing, Mater. Sci. Eng. A. 702 (2017) 438-445.
[124] G.G. Saha, P.G. McCormick, P. Rama Rao, Portevin-Le chatelier effect in an Al-Mn alloy I: serration characteristics, Mater. Sci. Eng. 62 (1984) 187-196.
[125] E.O. Hall, "Yield point phenomena in metals and alloys", Springer, Boston, MA, USA, (1970) 30-41.
[126] J.W. Wyrzykowski, M.W. Grabski, Lüders deformation in ultrafine-grained pure aluminium, Mater. Sci. Eng. 56 (1982) 197-200.
[127] G.E. Dieter, "Mechanical metallurgy", McGraw-Hill, New York, NY, USA, (1961) 132-135.
[128] S.T. Chen, T.S. Lui, L.H. Chen, Effect of revolutionary pitch on the microhardness drop and tensile properties of friction stir processed 1050 aluminum alloy, Mater. Trans. 50 (2009) 1941-1948.
[129] J.Y. Uan, L.H. Chen, T.S. Lui, A study of the texture hardening of pure aluminum and Al-Al3Ni eutectic alloy with [111] fiber texture, Scripta Mater. 36 (1997) 1391-1395.
[130] J.Y. Uan, L.H. Chen, T.S. Lui, A study on the subgrain superplasticity of extruded Al-Al3Ni eutectic alloy, Metall. Mater. Trans. A. 28 (1997) 401-409.