簡易檢索 / 詳目顯示

研究生: 郭桓卲
Kuo, Huan-Shao
論文名稱: 利用選擇性成長及側壁蝕刻方式增加氮化鎵系列藍光發光二極體光輸出功率之研究
Enhancement in Output Power of Blue GaN-based Light Emitting Diode Using Selective Area Regrowth and Sidewall Etching Technique
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 氮化鎵選擇性成長化學濕式蝕刻
外文關鍵詞: GaN, SAG, Undercut Sidewall
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為分別利用選擇性磊晶成長(Selective Area Growth, SAG)以及化學濕式蝕刻法 (Chemical Crystallographic wet etching) 應用於氮化鎵發光二極體提升光萃取效率之研究。
      利用選擇性成長自然形成特定方向的斜面增加光萃取效率。選擇性成長發光二極體 (310 μm × 310 μm) 於20 mA電流注入下,光輸出功率相較於傳統發光二極體增加20.6 % ; 除此之外,選擇性成長亦不需乾式蝕刻製程步驟。而利用化學濕式蝕刻氮化鎵磊晶層使其形成倒金字塔形側壁 (Undercut Sidewalls);當元件 (250 μm × 575 μm) 於20 mA操作電流下,光輸出功率相較於傳統發光二極體增加21.4 %。最後同時結合上述磊晶及製程兩種技術應用於發光二極體以期更有效提升光萃取效率。

    Using the selective-area growth (SAG) method and sidewall-etching technique, we demonstrate GaN-based light-emitting diodes (LEDs) with enhanced light extraction efficiency. The SAG GaN-based LEDs with obliquely self-assembled facets improve light extraction efficiency. With an injection current of 20 mA, the light output power of the SAG GaN-based LEDs (310 × 310 μm) can be markedly improved by 20.6% magnitude compared with conventional GaN-based LEDs. Furthermore, the SAG technique eliminates the need for the dry etching procedure.
      The LEDs with oblique undercut sidewalls formed by chemical crystallographic wet etching technique could improve the escape probability of photons from semiconductors to air. With an injection current of 20 mA, the light output power of the undercut sidewall LEDs (250 × 575 μm) can be markedly improved by a magnitude of 21.4% compared with conventional GaN-based LEDs.
      Finally, the SAG growth method and sidewall-etching technique are combined to further increase light extraction efficiency.

    目錄 摘要 I Abstract II 誌謝 III 目錄 V 表目錄 IX 圖目錄 X 第一章 序論 1 1.1前言 1 1.2 發光二極體(Light Emitting Diodes ;LEDs)之現況 3 1.3 研究動機與目的 5 1.3.1 改變發光二極體晶粒的外型 6 1.3.2 實驗方法 7 參考文獻 11 第二章 背景知識 15 2.1 理論背景 15 2.1.1 發光二極體(Light Emitting diodes;LEDs)原理 15 2.1.2 發光二極體光萃取原理 16 2.2 氮化鎵( GaN )蝕刻方法 18 2.2.1 乾式蝕刻原理與簡介 19 2.2.2 濕式蝕刻原理與簡介 20 2.3 量測系統 23 2.3.1 電流與電壓量測系統 23 2.3.2 電激發光量測系統 23 2.3.3 發光二極體光輸出功率量測系統 24 2.3.4 發光二極體二維光強度量測系統 24 參考文獻 32 第三章 實驗方法與製程步驟 34 3.1 standard發光二極體製程方法與步驟 34 3.1.1 發光二極體高台蝕刻(Mesa etching)製程: 34 3.1.2 發光二極體氧化銦錫(ITO)透明導電薄膜(TCL)製程 37 3.1.3 發光二極體金屬電極製程 39 3.2.1  SAG發光二極體Selective Area regrowth製程: 40 3.2.2 SAG發光二極體氧化銦錫(ITO)透明導電薄膜(TCL)製程 41 3.2.3 發光二極體金屬電極製程 41 3.3 化學濕式蝕刻底切側壁(Chemical wet etching undercut sidewall)應用於發光二極體製程方法與步驟 42 Introduction 42 3.3.1 化學濕式蝕刻底切側壁製程: 43 3.3.2 發光二極體高台蝕刻(Mesa etching)製程: 44 3.3.3 發光二極體氧化銦錫(ITO)透明導電薄膜(TCL)製程 44 3.3.4 發光二極體金屬電極製程 44 3.4 選擇性再成長與化學濕式蝕刻底切側壁應用於發光二極體製程方法與步驟 45 3.4.1 選擇性再成長製程: 45 3.4.2 化學濕式蝕刻底切側壁製程 45 3.4.3 發光二極體氧化銦錫(ITO)透明導電薄膜(TCL)製程 45 3.4.4 發光二極體金屬電極製程 45 第四章 實驗結果分析與討論 47 4.1 選擇性區域成長技術應用於發光二極體之光電特性分析 47 4.1.1 選擇性成長技術應用於發光二極體之光特性分析 48 4.1.2選擇性成長技術應用於發光二極體之電特性分析 49 4.2化學濕式蝕刻側壁技術與選擇性成長技術應用於發光二極體之光電特性分析 51 4.2.1化學濕式蝕刻側壁技術應用於發光二極體之光電特性分析 51 4.2.2 選擇性成長技術結合化學濕式蝕刻側壁技術應用於發光二極體之光電特性分析 54 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來工作 72

    第一章
    [1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita,H.Kiyoku, Y.Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K.Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates”Appl. Phys. Lett., Vol.72, No.16, p.2014-2016, 1998.
    [2] M. Razeghi , and A. Rogalski , “Semiconductor ultraviolet detectors” J. Appl. Phys,Vol.79, p.7433, 1996.
    [3] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren , “GaN: Processing, defects, and devices” J. Appl. Phys.,Vol.86, p.1, 1999.
    [4]. S. Nakamura ,Masayuki Senoh, Takashi Mukai, “Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers” , Jpn. J. Appl. Phys.Vol .30, L1708-L1711, 1991.
    [5].史光國,“半導體發光及雷射二極體材料技術”, 全華科技圖書股份有限公司, 2004.
    [6]. Y. K. Su, S.J. Chang, C.H. Ko, J.F. Chen, T.M. Kuan, W.H. Lan, W.J. Lin,Y.T. Cherng, and J. Webb, “InGaN/GaN Light Emitting Diodes With a p-Down Structure”, IEEE Transactions On Electron Devices, Vol. 49, no.8, pp. 1361-1366, 2002.
    [7]. C. H. Ko, Y. K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin, and J. Webb, “P-Down InGaN/GaN Multiple Quantum Wells Light-Emitting Diode Structure Grown by Metal-Organic Vapor-Phase Epitaxy”, Jpn. J. Appl. Phys, Vol. 41, no. 4, pp. 2489-2492, 2002.
    [8]. C. Bayram, F.H. Teherani, D.J. Rogers, and M. Razeghi, “A hybrid green Light-Emitting Diode comprised of n-ZnO/ (InGaN/GaN) multi-quantum-wells p-GaN”, Applied Physics Letters, Vol. 93, pp.081111, 2008.
    [9]. M. L. Reed, E. D. Readinger, H. Shen, M. Wraback, A. Syrkin, A. Usikov,O.V. Kovalenkov, V.A. Dmitriev, “n-InGaN/p-GaN single heterostructure light emitting diode with p-side down”, Applied Physics Letters, Vol. 93, pp. 133505, 2008.
    [10]. B. Damilano, N. Grandjean, C. Pernot1 and J. Massies, ” Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells”, Jpn. J. Appl. Phys. , Vol. 40, pp. L 918–L 920, 2001.
    [11]. B. Damilano, N. Grandjean, C. Pernot1 and J. Massies,” Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells”, Jpn. J. Appl. Phys. , Vol. 40, pp. L 918–L 920, 2001.
    [12]. T. Mukai, D. Morita and S. Nakamura, J.Crystal Growth,” High-power UV InGaN/AlGaN double-heterostructure LEDs”,Vol.190,pp. 778-781 , 1998.
    [13]. Y. Chen, R. Schneider, S. Y. Wang, R. S. Kern, C. H. Chen, and C. P. Kuo, “Dislocation reduction in GaN thin films via lateral overgrowth from trenches”, APPLIED PHYSICS LETTERS, Vol.75,No.14,pp.2062-2063, 1999.
    [14]. T. S. Zheleva, W. M. Ashmawi , and K. A. Jones, “Pendeo-Epitaxy versus Lateral Epitaxial Overgrowth of GaN :A Comparative Study via Finite Element Analysis”, phys. stat. sol. Vol.176, pp.545 , 1999.
    [15]. H. Miyake, R. Takeuchi, K. Hiramatsu, H. Naoi , Y. Iyechika , T. Maeda , T. Riemann , F. Bertram , and J. Christen, ” High Quality GaN Grown by Facet-Controlled ELO (FACELO) Technique”, phys. stat. sol. (a) 194, No. 2, pp.545–549, 2002.
    [16]. Kazumasa Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy”, JOURNAL OF PHYSICS: CONDENSED MATTER, No.13, pp. 6961–6975, 2001.
    [17]. C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based, light-emitting diode by micro-roughening of the p-GaN surface,” J. Appl. Phys., Vol. 93, pp. 9383–9385, 2003.
    [18]. Keunjoo Kim , Jaeho Choi ,Tae Sung Bae ,Deok Ha Woo, “Enhanced Light Extraction from Nanoporous Surfaces of InGaN/GaN-Based Light Emitting Diodes” Jpn. J. Appl. Phys, Vol.46, pp.6682-6684, 2007.
    [19].T. Fujii, Y. GaO, R. Sharma, E. L. Hu, S.P.DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diode via surface roughening”Appl.Phys.Lett, Vol.84, pp855, 2004.
    [20]. Shao-Hua Huang, Ray-Hua Horng, Kuo-Sheng Wen, Yi-Feng Lin, Kuo-Wei Yen, and Dong-Sing Wuu, “Improved light extraction of nitride-based flip-chip light emitting diodes via sapphire shaping and texturing.”IEEE Photonics Technol.Lett, Vol.18, pp.2623, 2006.
    [21]. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen,I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford,” High-power truncated-inverted-pyramid .AlxGa12x.0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency”, Applied Physics Letters, Vol. 75, No. 16,pp.2365-2367, 1999.
    [22]. Chih-Chiang Kao, Hao-Chung Kuo, Hung-Wen Huang, Jung-Tang Chu, Yu-Chun Peng,Yong-Long Hsieh, C. Y. Luo, Shing-Chung Wang, Chang-Chin Yu, Chia-Feng Lin,” Light–Output Enhancement in a Nitride-Based Light-Emitting Diode With 22 Undercut Sidewalls”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 17, NO. 1, pp.19-21, 2005.
    [23]. Jae-Soong Lee, Joonhee Lee, Sunghwan Kim, Heonsu Jeon,” GaN-Based Light-Emitting Diode Structure With Monolithically Integrated Sidewall Deflectors for Enhanced Surface Emission”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 18, NO. 15, pp.1588-1590, 2006.
    [24]. Chia-Feng Lin, Zhong-Jie Yang, Jing-Hui Zheng, Jing-Jie Dai, “High-Efficiency InGaN Light-Emitting Diodes Via Sidewall Selective Etching and Oxidation”, Journal of The Electrochemical Society, Vol. 153, G39-G43, 2006.
    [25]. Chia-Feng Lin, Chun-Min Lin, Chung-Chieh Yang, Wei-Kai Wang, Yu-Chieh Huang, Jien-An Chen, Ray-Hua Horng, “InGaN-Based Light-Emitting Diodes with a Cone-Shaped Sidewall Structure Fabricated Through a Crystallographic Wet Etching Process”, Vol. 12, H233-H237,2009.

    第二章

    [26]. 施敏, “半導體元件物理”, 國立交通大學出版社, 2007.
    [27]. 郭浩中, 賴芳儀, 郭守義, “LED原理與應用”, 五南圖書出版公司, 2009.
    [28]. E. FRED SCHUBERT, “LIGHT-EMITTING DIODES”, CAMBRIDGE UNIVERSITY PRESS, 2006.
    [29]. 陳隆建, ”發光二極體之原理與製程”, 全華圖書股份有限公司,2008.
    [30]. 蔡孟希, ”反應式離子蝕刻應用在氮化鎵材料上之研究”,國立成功大學微電子工程研究所碩士論文, 2006.
    [31]. S. Wolf, “Silicon Processing for the VLSI Era”, vol.1 Ch.15, lattice Press, 1986.
    [32]. C. F. Lin, J. J. Dai, R. H. Jiang, J. H. Zheng, Z. J. Yang, C. C. Yu, and W. C. Lee, “Photoelectrochemical sidewall etching enhances light output power in GaN-based light emitting diodes”, phys. stat. sol, No. 6, pp.2182–2186 , 2006.
    [33]. J. R. Mileham, S. J. Pearton, C. R. Abernathy, and J. D. MacKenzie, “Patterning of AlN, InN, and GaN in KOH-based solutions”, J. Vac. Sci. Technol. A, Vol. 14, No. 3,1996.
    [34]. Akira Shintani, Shigekazu Minagawa, “Etching of GaN Using Phosphoric Acid”, J. Electrochem.Soc:Solid State Science and Technology, Vol.123, No.5, pp.706-713, 1976.
    [35]. B. J. KIM, J. W. LEE, H. S. PARK, Y. PARK, and T. I. KIM, “Wet Etching of (0001) GaN/Al2O3 Grown by MOVPE”, Journal of Electronic Materials, Vol. 27, No. 5,pp.L32-L34, 1998.
    [36]. D. A. Stocker , E. F. Schubert, ” Crystallographic wet chemical etching of GaN”, APPLIED PHYSICS LETTERS, Vol.73, No.18, pp.2654-2656, 1998.
    [37]. Lei Ma, K. Fareen Adeni, Chang Zeng, Yawei Jin, Krishnanshu Dandu, Yoganand Saripalli, Mark Johnson, Doug Barlage,” Comparison of Different GaN Etching Techniques”, CS MANTECH Conference, pp.105-108, 2006.
    [38]. Cho. H, Donovan. S.M., et al., “Photo-electrochemical etching of InxGa1-xN” J. Nitride semiconductor research, 4S1, G6.40, 1999.
    [39]. Youtsey. C, Adesida. I, and Bulman. G. “Highly anisotropic photo enhanced wet etching of n-type GaN”. Appl. Phys. Lett.vol. 71,p15, 1997.
    [40]. Minsky. M.S, White. M, Hiu. E.L.“Room-temperature photoenhanced wet etching of GaN”. Appl. Phys. Lett.Vol. 68,p11, 1996.
    [41]. Hsieh. J.T, Hwang. J.M. and Hwang. H.L.“Damage free photo-assisted cryogenic etching of GaN as evidenced by reduction of yellow luminescence”. MRS. Internet J. Nitride Semicond. Res. 4S1, G10.6, 1999.
    [42]. Lu. H, Wu. Z, and Bhat. I. “Photo-assisted anodic etching of Gallium Nitride”. J. Electronchem. Soc. Vol. 144, No. 1, 1997.
    [43]. DeSalvo. et al. “Wet chemical digital etching of GaAs at room temperature”. J. Electronchem. Soc. Vol. 143, No. 11, 1996.
    [44]. Bardwell. et al. “Ultraviolet photo-enhanced wet etching of GaN in K2S2O8 solution”. J. of Applied Physics, Vol. 89 (7), 2001.

    無法下載圖示 校內:2013-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE