| 研究生: |
蔡慶璋 Tsai, Ching-Jang |
|---|---|
| 論文名稱: |
以空載光達資料自動化偵側蝕溝空間特徵與發育潛勢評估 Automatic Detection of the Spatial Feature and Assess the Growth Potential of Gully with Aerial LiDAR |
| 指導教授: |
余騰鐸
Yu, Ting-To |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 蝕溝 、蝕溝自動化搜索 、小波分析 、Canny算子 、蝕溝發育潛勢 、空載光達 |
| 外文關鍵詞: | gully, automatic detection of gully, wavelet, canny, growth potential of gully, aerial LiDAR |
| 相關次數: | 點閱:121 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣氣候多雨,且位於環太平洋火山地震帶,每年發生地震的次數頻繁使地表土質鬆動,加上每年颱風及梅雨帶來豐沛雨量,導致山區蝕溝持續發育,往往導致災難。蝕溝的位置與分布在以往因技術的限制所以取得相當困難,而現在則可以透過空載光達的技術取得高解析度地表數值地形(DEM),本研究透過小波分析、Canny算子、蝕溝篩選以及雜訊過濾等步驟,設計出一套客觀且自動化的流程來找出蝕溝的分布。本研究的DEM範圍為曾文水庫集水區北段,拍攝時間為2015年12月,涵蓋範圍約140平方公里,在執行完蝕溝自動化搜索流程後,於2017年1月至現場勘查是否為蝕溝,該自動化流程根據Confusion Matrix的計算結果其精準度(Accuracy)約為65.81%。除了蝕溝自動化搜索,本研究偵測研究區域中的蝕溝發育情形,利用地形濕度因子(TWI)、坡度、坡向、順向坡、土地利用、曲率以及地層岩性等七個因子,再搭配本研究所設計的蝕溝自動搜索流程作為目標屬性,評估各個因子與蝕溝的相關程度,計算出蝕溝發育潛勢圖,該結果可以利用成功率曲線來判斷其精準程度,精準度為66.07%。因台18線為此區域的主要幹道,每年因豪大雨所發生的災害頻仍,所以依據蝕溝發育潛勢來評估台18線道路兩側的蝕溝侵蝕程度,標示出受蝕溝侵蝕的危險路段,則為豪雨時極可能發生土石崩落以及路基掏空的位置。
Recently, the technology of Aerial LiDAR was developed quickly, so we could produce a more accuracy digital elevation model (DEM) with higher accuracy. Based on this high resolution DEM, an automatic and objective process to uncover the distribution of gullies via the following methods : “wavelet analyst”, “Canny edge detector”, “define the gully-shape” and “perform non-linear noises removing”. The 140 〖km〗^2 DEM used in this study is at the northern part of Tseng-Wen Reservoir Catchment in southern Taiwan. The points cloud which formed the DEM was captured at Dec. 2015. After appling the automatic searching model for the DEM, we inspected the results on site at Jan, 2017. Compared the results of the automatic model and the site inspection by Confusion Matrix, the total accuracy of automatic model is 68.88%.
The 18th Taiwan Province highway, we also call Alishan-Motorway, is the trunk major traffic road to access the study area. It is very important for residents and tourists for the traffic mission, but Alishan-Motorway also suffered sever disasters, such as landslide and subgrade-emptieded, during heavy rain almost occurred every year. This study considered that some of the disasters that could related to the growth of gully. Therefore, another purpose in this study is to assess the growth potential of gully. Because the development of gully is triggered by many factors, this study used seven topographic factors as the attributes and the gully-distrubution from automatic gully detection model as the target attribute to map the growth potential of gully. The accuracy of the potential map is 66.07%. Finally, this study search the the area which could be threatened by the vagorous grouth of gully. If the dangered locations are spreated at the upper slope, the landslide might happened, else if the dangered locations should scattered at the lower slope, the the subgrade-emptieded may happen.
Abry, P. (1997). Ondelettes et turbulences: multirésolutions, algorithmes de décomposition, invariance d'échelle et signaux de pression, Diderot Editeur, Arts & Sicences.
Akgun, A. and N. Turk (2011). "Mapping erosion susceptibility by a multivariate statistical method: A case study from the Ayvalik region, NW Turkey." Computers & Geosciences 37(9): 1515-1524.
Canny, J. (1986). "A Computational Approach to Edge-Detection." Ieee Transactions on Pattern Analysis and Machine Intelligence 8(6): 679-698.
Castillo, C., et al. (2014). "The normalized topographic method: an automated procedure for gully mapping using GIS." Earth Surface Processes and Landforms 39(15): 2002-2015.
Chaplot, V. (2013). "Impact of terrain attributes, parent material and soil types on gully erosion." Geomorphology 186: 1-11.
Chung, C. J. F. and A. G. Fabbri (2003). "Validation of spatial prediction models for landslide hazard mapping." Natural Hazards 30(3): 451-472.
Conforti, M., et al. (2011). "Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy)." Natural Hazards 56(3): 881-898.
Conoscenti, C., et al. (2014). "Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy)." Geomorphology 204: 399-411.
Conoscenti, C., et al. (2008). "Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily." Natural Hazards 46(3): 287-305.
Dube, F., et al. (2014). "Potential of weight of evidence modelling for gully erosion hazard assessment in Mbire District - Zimbabwe." Physics and Chemistry of the Earth 67-69: 145-152.
Epperson, J. and M. Frazier (1994). "An Almost Orthogonal Radial Wavelet Expansion for Radial Distributions." The journal of Fourier analysis and applications [[Elektronische Ressource]] 1(3): 311-354.
Farge, M. (1992). "Wavelet Transforms and Their Applications to Turbulence." Annual Review of Fluid Mechanics 24: 395-457.
Frankl, A., et al. (2013). "Transferring Google Earth observations to GIS-software: example from gully erosion study." International Journal of Digital Earth 6(2): 196-201.
Geissen, V., et al. (2007). "Superficial and subterranean soil erosion in Tabasco, tropical Mexico: Development of a decision tree modeling approach." Geoderma 139(3-4): 277-287.
Gutierrez, A. G., et al. (2009). "Gully Erosion, Land Use and Topographical Thresholds during the Last 60 Years in a Small Rangeland Catchment in Sw Spain." Land Degradation & Development 20(5): 535-550.
Gutierrez, A. G., et al. (2009). "Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies." Ecological Modelling 220(24): 3630-3637.
Gutierrez, A. G., et al. (2009). "Modelling the occurrence of gullies in rangelands of southwest Spain." Earth Surface Processes and Landforms 34(14): 1894-1902.
Hsaio, K.-H., et al. (2009). "Automation of Landslide Detection Using Optical Images and LiDAR Data."
Hughes, A. O., et al. (2001). "Gully erosion mapping for the national land and water resources audit." CSIRO land and water, Canberra, technical report 26: 01-20.
Kheir, R. B., et al. (2007). "Use of terrain variables for mapping gully erosion susceptibility in Lebanon." Earth Surface Processes and Landforms 32(12): 1770-1782.
Lucà, F., et al. (2011). "Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy." Geomorphology 134(3): 297-308.
Magliulo, P. (2010). "Soil erosion susceptibility maps of the Janare Torrent Basin (southern Italy)." Journal of Maps 6(1): 435-447.
Mallat, S. (1999). A wavelet tour of signal processing, Academic press.
Mallat, S. G. (1989). "A theory for multiresolution signal decomposition: the wavelet representation." Ieee Transactions on Pattern Analysis and Machine Intelligence 11(7): 674-693.
Meyer, A. and J. Martınez-Casasnovas (1999). "Prediction of existing gully erosion in vineyard parcels of the NE Spain: a logistic modelling approach." Soil and Tillage Research 50(3): 319-331.
Moore, I. D., et al. (1991). "Digital terrain modelling: a review of hydrological, geomorphological, and biological applications." Hydrological processes 5(1): 3-30.
Perroy, R. L., et al. (2010). "Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California." Geomorphology 118(3-4): 288-300.
Shit, P. K., et al. (2015). "Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India." Modeling Earth Systems and Environment 1(1-2): 2.
Shruthi, R. B. V., et al. (2015). "Quantifying temporal changes in gully erosion areas with object oriented analysis." Catena 128: 262-277.
Svoray, T., et al. (2012). "Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold." Earth Surface Processes and Landforms 37(6): 607-619.
Torri, D., et al. (2012). Identifying gullies in the Mediterranean environment by coupling a complex threshold model and a GIS. RENDICONTI Online della Società Geologica Italiana, Società Geologica Italiana.
Van Westen, C. J. (1993). "Application of geographic information systems to landslide hazard zonation."
Yin, K. and T. Yan (1988). Statistical prediction model for slope instability of metamorphosed rocks. Proceedings of the 5th international symposium on landslides, Lausanne, Switzerland, AA Balkema Rotterdam, The Netherlands.
Young, R. K. (2012). Wavelet theory and its applications, Springer Science & Business Media.
Zhou, Z. and H. Adeli (2003). "Time‐frequency signal analysis of earthquake records using Mexican hat wavelets." Computer‐Aided Civil and Infrastructure Engineering 18(5): 379-389.
林書毅,(1999),區域性山坡穩定評估方法探討-以林口台地為例,國立中央大學應用地質研究所碩士論文。
洪義凱,(2005),合成孔徑雷達影像之地形線形特徵萃取,國立中興大學太空科學研究所碩士論文。
張石角,(1987),山坡潛在危險之預測及在環境評估之應用,中華水土保持學報,18(2)。
張石角,(1992),台灣各地質分區邊坡崩坍類型及其預測方法,行政院農委會專題研究,81農建12,第21-35頁。
許秋玲,(2002),數值高度模型之地形複雜度量度指標研究-以蝕溝等級為例,國立台灣大學地理環境資源研究所碩士論文。
陳曜銘,(2016),以不安定指數法驗證蝕溝因子崩塌潛感預測之準確性,國立成功大學資源工程所碩士論文。
曾繼興,(2016),使用空載光達與衛星影像分析植生覆蓋與蝕溝發育關聯性,國立成功大學資源工程所碩士論文。
黃韋凱、朱晃葵、羅佳明、王晉倫、鄭宏昭、呂育勳、邱閔卿,(2013),地質構造引致崩塌--以那次蘭集水區為例,中興工程,頁31-35。
溫振宇,(2005),結合地震與颱風因子之山崩模式分析,國立成功大學地球科學所碩士論文。
潘彥男,(2007),利用電腦自動化對數值高程模型作線形偵測,國立中興大學太空科學研究所碩士論文。