簡易檢索 / 詳目顯示

研究生: 陳毓萍
Chen, Yu-ping
論文名稱: 使用銥金屬研製氧化鋅蕭基二極體與利用溶膠凝膠法合成不同摻雜之氧化鋅粉末
The study of ZnO Schottky diodes with Ir contact electrodes and the different doping on ZnO powders with sol-gel method
指導教授: 姬梁文
Ji, Liang-wen
張守進
Chang, Shoou-jinn
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 73
中文關鍵詞: 氧化鋅蕭基二極體蕭基能障溶膠凝膠法
外文關鍵詞: sol-gel, barrier height, Schottky diodes, ZnO
相關次數: 點閱:80下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以最近相當熱門的氧化鋅Ⅱ-Ⅵ族寬能隙半導體作為研究主軸。論文分為兩個部分,第一部分為蕭基二極體的研究;利用E-gun鍍銥30nm電極為蕭基接面,而歐姆接面則是鍍上鈦/鋁/鈦/金 (20/20/20/60nm),接著在500℃通氮氣的環境下回火1分鐘。經I-V-T及C-V量測,利用熱離子放射公式在室溫之下的量測及計算出來的蕭基能障為0.824eV、理想因子為1.68,利用Norde公式計算的蕭基能障則為0.837eV,而經C-V在室溫之下量測及公式計算出來的蕭基能障則為0.92eV。其中還探討量測溫度對蕭基能障及理想因子的影響,當測量溫度越大,蕭基能障會越小而理想因子會越大。
    下一步將二極體分別在500℃通氮氣及通氧氣的環境下回火1分鐘,之後做相同的計算得到通氮氣及氧氣回火的蕭基能障分別為0.909、1.063eV,理想因子分別為1.57、1.29,其中發現經通氧氣回火後會有效改善蕭基二極體的整流特性,有可能是因為產生了二氧化銥,所以延伸了另一部份做二氧化銥薄膜的研究;利用E-gun鍍Ir 10nm於康寧玻璃上,在500℃通氮氣及通氧氣的環境下回火1分鐘,再利用XRD、霍爾量測、穿透率等量測結構及光電特性,發現經氧氣回火後的確會產生二氧化銥且對於350nm以上波長的光穿透率達55%、電阻率比未回火降低一個數量級。
    第二個部分為AZO及IZO粉末研究;由於氧化鋅摻雜鋁、銦等三族金屬有利於改善氧化鋅的光電特性,所以我們利用溶膠-凝膠法製作氧化鋅摻鋁及摻銦的粉末,再經由拉曼光譜、X-ray繞射儀等做結構分析。

    The thesis is made up of two parts:
    PartⅠ: This part is the research of Schottky diodes. The Ti/Al/Ti/Au (20/20/20/60nm) ohmic contact were deposited of thermal evaporated films onto the ZnO, and then annealed at 500℃ for 1min under N2 ambient. The Schottky contact that Ir (30nm) were then patterned by lift-off of e-beam evaporation. Then the I-V and C-V characters of the as-deposed diodes are measured. According to the I-V characteristic at room temperature, the Schottky barrier height were 0.824 eV and 0.837 eV are calculated by thermionic emission model and Norde model, respectively. The ideal factor was 1.68 that calculated with thermionic emission model. According to the C-V characteristic at room temperature, the Schottky barrier height was 0.92 eV. At different measure temperature, the value of barrier height decrease and the value of ideal factor increases with increasing measure temperature.
    Next step, some of the Schottky diodes were annealed at temperatures up to 500℃ for 1 min under N2 and O2 ambient, respectively. Then I measured the I-V characteristic of this diodes and calculated the Schottky barrier height were 0.909 eV under N2 ambient and 1.063 eV under O2 ambient, respectively. Calculated the ideal factor were 1.57 and 1.29 under N2 and O2 ambient, respectively. The improvement of Schottky characteristics were considerable when the Ir/ZnO Schottky diode are annealed at 500℃ under O2 ambient. Therefore, we are discussed the IrO2 thin film. The Ir(50nm) thin film was deposited onto the glass ,and then annealed at 500℃ for 1min under O2 ambient. Then I used the X-ray diffraction system, Hall effect system and transmittance measurement system to check the structure, optical and electric characteristic of the thin film. According to these measurements, there was indeed the IrO2 element in the thin film and the resistance was reduced more than one order after annealing. As the wavelength of incident, for above 350nm, the transmittance was up to 50%.
    Part II : This part is the research of AZO and IZO powder. Doping with selective elements offers an effective method to adjust the electrical and optical properties of ZnO. The In: ZnO and Al: ZnO powders are made with sol-gel method. This products after the reaction were characterized by using X-ray powder diffraction, Raman spectrum system and field-emission scanning electron microscopy.

    Chapter1 Introduction 1 1-1 Background 1 1-2 Organization 5 Chapter2 Ir/ZnO Schottky diodes 6 2-1 Introduction 6 2-2 The basic physics of Schottky contact 6 2-2-1 Current transport mechanisms 10 2-3 The Calculated method of Schottky barrier height 11 2-3-1 Thermionic emission model 11 2-3-2 Norde model 12 2-3-3 Capacitance-Voltage measurement method 13 2-4 Fabrication system 14 2-4-1 ZnO substrate 14 2-4-2 Contacts 15 2-4-3 Annealing process 19 2-5 As-deposited Schottky diodes performance 20 2-5-1 Current-Voltage-Temperature (I-V-T) measurement 20 2-5-2 Capacitance-Voltage(C-V) measurement 34 2-6 Post-anneal Schottky diodes performance 35 2-6-1 Current-Voltage (I-V) measurement after annealing 35 Chapter 3 IrO2 transparent conductive thin film 43 3-1 Introduction 43 3-2 Experiments 44 3-3 Measurements 44 3-3-1 X-ray analysis 44 3-3-2 Transmittance analysis 45 3-3-3 Resistivity analysis 46 Chapter 4 AZO and IZO powder 48 4-1 Introduction 48 4-2 Experiments 49 4-3 Measurements 52 4-3-1 X-ray analysis 52 4-3-2 Raman analysis 55 4-3-3 SEM and EDS analysis 63 Chapter 5 Conclusion and Future works 67 5-1 Conclusion 67 5-2 Future works 68 Reference 69 Table and Figure Captions Table 1-1 Comparison of properties of ZnO with those of other wide bandgap semiconductors 3 Table 1-2 Properties of wurtzite ZnO 4 Table 2-1 Schottky barrier height, resistance and ideal factor at measurement temperature between 26 and 150℃ 33 Table 2-2 Schottky barrier height, resistance and ideal factor of the Schottky diodes with annealing condition 42 Table 3-1 The bulk resistivity of Ir thin film with annealing conditions 47 Fig. 1-1 Projection of the ZnO wurtzite structure 2 Fig. 2-1a Energy-band diagram of a metal and semiconductor before contact 8 Fig. 2-1b Ideal energy-band diagram of a metal n-semiconductor junction for φm > φs 8 Fig. 2-2a Ideal energy-band diagram of metal-semiconductor junction under reverse bias 9 Fig. 2-2b Ideal energy-band diagram of metal-semiconductor junction under forward bias 9 Fig. 2-3 Current transport processes in a forward bias Schottky barrier 10 Fig. 2-4 The schematic model of sputter process 14 Fig. 2-5 The fabrication step of Schottky contacts 16 Fig. 2-6 The schematic structure of the ZnO Schottky diode 17 Fig. 2-6 The photo of the Schottky diodes 17 Fig. 2-7 The photo of one Schottky diode 18 Fig. 2-8 The photo of the Schottky diodes after annealing 19 Fig. 2-9 The photo of one Schottky diode after annealing 20 Fig. 2-10 Forward I-V-T characteristics for the as-deposited Schottky diode 24 Fig. 2-11 Reverse I-V-T characteristics for the as-deposited Schottky diode 24 Fig. 2-12 The reverse current as a function of measurement temperature for the as-deposited Schottky diodes at a bias of -1.5V 25 Fig. 2-13 The plot of d(V)/d(lnJ) versus I (current) for the as-deposited Schottky diode at the measurement temperature 26℃ 25 Fig. 2-14 The plot of H(V) versus I (current) for the as-deposited Schottky diode at the measurement temperature 26℃ 26 Fig. 2-15 The plot of F(V) versus V(voltage) for the as-deposited Schottky diode at the measurement temperature 26℃ 26 Fig. 2-16 The plot of d(V)/d(lnJ) versus I (current) for the as-deposited Schottky diode at the measurement temperature 30℃ 27 Fig. 2-17 The plot of H(V) versus I (current) for the as-deposited Schottky diode at the measurement temperature 30℃ 27 Fig. 2-18 The plot of F(V) versus V(voltage) for the as-deposited Schottky diode at the measurement temperature 30℃ 28 Fig. 2-19 The plot of d(V)/d(lnJ) versus I (current) for the as-deposited Schottky diode at the measurement temperature 50℃ 28 Fig. 2-20 The plot of H(V) versus I (current) for the as-deposited Schottky diode at the measurement temperature 50℃ 29 Fig. 2-21 The plot of F(V) versus V(voltage) for the as-deposited Schottky diode at the measurement temperature 50℃ 29 Fig. 2-22 The plot of d(V)/d(lnJ) versus I (current) for the as-deposited Schottky diode at the measurement temperature 100℃ 30 Fig. 2-23 The plot of H(V) versus I (current) for the as-deposited Schottky diode at the measurement temperature 100℃ 30 Fig. 2-24 The plot of F(V) versus V(voltage) for the as-deposited Schottky diode at the measurement temperature 100℃ 31 Fig. 2-25 The plot of d(V)/d(lnJ) versus I (current) for the as-deposited Schottky diode at the measurement temperature 150℃ 31 Fig. 2-26 The plot of H(V) versus I (current) for the as-deposited Schottky diode at the measurement temperature 150℃ 32 Fig. 2-27 The plot of F(V) versus V(voltage) for the as-deposited Schottky diode at the measurement temperature 150℃ 32 Table 2-1 Schottky barrier height, resistance and ideal factor at measurement temperature between 26 and 150℃ 33 Fig. 2-28 The plots of of C versus V and 1/C2 versus V for the as-deposited Schottky diode at the measurement temperature 26℃ 34 Fig. 2-29 Forward I-V characteristics for the Schottky diodes with annealing condition 38 Fig. 2-30 Reverse I-V characteristics for the Schottky diodes with annealing condition 38 Fig. 2-31 The plot of d(V)/d(lnJ) versus I (current) for the post-anneal Schottky diode at 500℃ under N2 ambient 39 Fig. 2-32 The plot of H(V) versus I (current) for the the post-anneal Schottky diode at 500℃ under N2 ambient 39 Fig. 2-33 The plot of F(V) versus V(voltage) for the post-anneal Schottky diode at 500℃ under N2 ambient 40 Fig. 2-34 The plot of d(V)/d(lnJ) versus I (current) for the post-anneal Schottky diode at 500℃ under O2 ambient 40 Fig. 2-35 The plot of H(V) versus I (current) for the the post-anneal Schottky diode at 500℃ under O2 ambient 41 Fig. 2-36 The plot of F(V) versus V(voltage) for the post-anneal Schottky diode at 500℃ under O2 ambient 41 Fig. 3-1 X-ray diffraction pattern of the Ir thin film with annealing conditions 45 Fig. 3-2 The optical transmittance spectra of 50nm thick Ir thin film with annealing conditions 46 Fig. 4-1 The XRD patterns of 800℃ un-doped, 6% Al-doped, 8% Al-doped and 10% Al-doped ZnO powder 53 Fig. 4-2 The XRD patterns of 900℃ un-doped, 6% Al-doped, 8% Al-doped and 10% Al-doped ZnO powder 53 Fig. 4-3 The XRD patterns of 800℃ un-doped, 6% In-doped, 8% In-doped and 10% In-doped ZnO powder 54 Fig. 4-4 The XRD patterns of 900℃ un-doped, 6% In-doped, 8% In-doped and 10% In-doped ZnO powder 54 Fig. 4-5 The Raman spectra of 800℃ un-doped, 6% Al-doped, 8% Al-doped and 10% Al-doped ZnO powder 58 Fig. 4-6 The Raman spectra of 900℃ un-doped, 6% Al-doped, 8% Al-doped and 10% Al-doped ZnO powder 58 Fig. 4-7 The Raman spectra of 800℃ un-doped, 6% In-doped, 8% In-doped and 10% In-doped ZnO powder 59 Fig. 4-8 The Raman spectra of 900℃ un-doped, 6% In-doped, 8% In-doped and 10% In-doped ZnO powder 59 Fig. 4-9 The Raman spectra of 900℃ 6% In-doped, 8% In-doped and 10% In-doped ZnO powder 60 Fig. 4-10 The Raman spectra of un-doped ZnO powder heat-treated at 800 and 900℃, respectively 60 Fig. 4-11 The Raman spectra of different doping concentration AZO powder heat-treated at 800 and 900℃, respectively 61 Fig. 4-12 The Raman spectra of different doping concentration IZO powder heat-treated at 800 and 900℃, respectively 62 Fig. 4-13 The SEM image of AZO powder heat-treated at 800℃ 64 Fig. 4-14 The SEM image of IZO powder heat-treated at 800℃ 64 Fig. 4-15 The energy dispersive X-ray spectrum (EDS) of the different doping concentration AZO 65 Fig. 4-16 The energy dispersive X-ray spectrum (EDS) of the different doping concentration IZO 66

    [1] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
    [2] See, for example, the discussion at http://ncsr.csci-va.com/materials/zno.asp
    [3] D. W. Palmer, http://www.semiconductors.co.uk, 2002.06
    [4] H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 12, 25 March (2002).
    [5] D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).
    [6] H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, and H. Hosono, Appl. Phys. Lett. 77, 475 (2000).
    [7] J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, Appl. Phys. Lett. 78, 3842 (2001).
    [8] A. A. Iliadis, R. D. Vispute, T. Venkatesan, and K. A. Jones, Thin Solid Films, 478, 402 (2002).
    [9] A. Inumpudi, A. A. Iliadis, S. Krishnamoorthy, S. Choopun, R. D. Vispute, and T. Venkatesan, Solid-State Electron. 46, 1665 (2002).
    [10] H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, Appl. Phys. Lett. 77, 1647 (2000).
    [11] H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, J. Electrochem. Soc. 148, G114 (2001).
    [12] J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, Appl. Phys. Lett. 78, 3842 (2001).
    [13] H. Sheng, N. W. Emanetoglu, S. Muthukumar, S. Feng, and Y. Lu, J. Electron. Mater. 31, 811 (2002).
    [14] H. Sheng, N. W. Emanetoglu, S. Muthukumar, B. V. Yakshinskiy, S. Feng, and Y. Lu, J. Electron. Mater. 32, 935 (2003).
    [15] H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seong, and I. Adesida, J. Appl. Phys. 94, 4225 (2003).
    [16] S. Y. Kim, H. W. Jang, J. K. Kim, C. M. Jeon, W. I. Park, G. C. Yi, and J.-L. Lee, J. Electron. Mater. 31, 868 (2002).
    [17] C. A. Mead, Phys. Lett. 18, 218 (1965).
    [18] R. C. Neville and C. A. Mead, J. Appl. Phys. 41, 3795 (1970).
    [19] J. C. Simpson and F. Cordaro, J. Appl. Phys. 63, 1781 (1988).
    [20] N. Ohashi, J. Tanaka, T. Ohgaki, H. Haneda, M. Ozawa, and T. Tsurumi, J. Mater. Res. 17, 1529 (2002).
    [21] H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).
    [22] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, and H. A. van Laarhoven, Appl. Phys. Lett. 79, 3074 (2001).
    [23] B. J. Coppa, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).
    [24] H. Sheng, S. Muthulumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).
    [25] Y. Liu, C. R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, J. Electron. Mater. 29, 69 (2000).
    [26] Jong Kyu Kim and Jong-Lam Lee, Journal of The Electrochemical Society, 151, G190 (2004).
    [27] Marvin L. Cohen, J. Vac. Sci. Technol. 16, (1979).
    [28] Neamen, “Semiconductor Physics and Devices”, McGRAW.Hill.(2003)
    [29] E. H. Rhoderick, and R. H. Williams, “Metal-Semiconductor Contacts”, Oxford Science Publication,(1988).
    [30] S.K Cheung and N. W. Cheung, Appl. Aphys. Lett. 49, (1986).
    [31] H. Norde, J. Appl. Phys. 50, (1979).
    [32] K. E. Bohlin, J. Appl. Phys. 60, (1986).
    [33] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, Appl. Phys. Lett. 72, (1998).
    [34] H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, (2002).
    [35] H. von Wenckstern, E. M. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J. Lenzner, V. Gottschalch, R. Pickenhain, and M. Grundmann, Appl. Phys. Lett. 84, (2004).
    [36] Dhananjay, J. Nagaraju, S. B. Krupanidhi, Physica B, 391, 344 (2007).
    [37] Cogan S F, Plante T D, McFadden R S and Rauh R D, Sol. Energy Mater. 16, 371 (1987).
    [38] Nishio K, Watanabe Y and Tsuchiya T, Thin Solid Films, 350, (1999).
    [39] R.K. Kawar, P.S. Chigare, P.S. Patil, Appl. Surf. Sci. 206, 90 (2003).
    [40] S. Hackwood, A.H. Dayem, G. Beni, Phys. Rev. B, 26, 471 (1982).
    [41] Fog A and Buck R P, Sensors Actuators 5, 137 (1984).
    [42] Yao S, Wang M and Madou M, J. Electrochem. Soc. 148, H29 (2001).
    [43] Smiechowski M F and Lvovich V F, Sensors Actuators B, 96, 261 (2003).
    [44] J. K. Kim and J. L. Lee, Journal of the Electrochemical Society, 151, G190 (2004).
    [45] L. F. Mattheiss, Phys. Rev. B, 13, 2433 (1976).
    [46] E. Kolawa, F. C. T. So, W. Flick, X.-A. Zhao, E. T. Pan, and M.-A. Nicolet, Thin Solid Films, 173, 217(1989).
    [47] L. Krusin-Elbaum and M. Wittmer, J. Electrochem. Soc. 135, 2610 (1997).
    [48] H. Zhong, G.Heuss, V. Misra, H. Juan, C.-H. Lee, and D.-L. Kwong, Appl. Phys. Lett. 78, 1134 (2001).
    [49] S. H. Lee, J. K. Chun, J. J. Hur, J. S. Lee, G. H. Rue, Y. H. Bae, S. H. Hah, Y. H. Lee, IEEE Electron Device Lett. 21, 261 (2000).
    [50] H. W. Jang and J. L. Lee, J. Appl. Phys. Lett., Submitted.
    [51] S.J. Henley, M.N.R. Ashfold, D. Cherns, Surf. Coat. Technol. 271, 177 (2004).
    [52] C. S. Hong, H. H. Park, J. M. , Thin Solid Films, 515, 957 (2006).
    [53] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science, 292, 1897 (2001).
    [54] J. J. Wu and S. C. Liu, J. Phys. Chem. B, 106, 9546 (2002); Adv. Mater. (Weinheim, Ger.), 14, 215 (2000).
    [55] K. S. Kim, H. W. Kim, Physica B, 328, 368 (2003).
    [56] K. Park, J. S. Lee, M. Sung, and S. Kim, Jpn. J. Appl. Phys. 41, 7317 (2002).
    [57] Y. Ma, G.T. Du, S.R. Yang, Z.T. Li, B.J. Zhao, X.T. Yang, T.P. Yang, Y.T. Zhang, D.L. Liu, Journal of Applied Physics, 95, 6268 (2004).
    [58] Ji Zhenguo, Liu Kun, Yang Chengxing, Fan Ruixin, Ye Zhizhen, Journal of Crystal Growth, 253, 246 (2003).
    [59] P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, R. Martins, Vacuum, 64, 281 (2002).
    [60] L. Vayssieres, K. Keis, S.-E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001).
    [61] Y. W. Chen, Y. C. Liu, S. X. Lu, C. S. Xu, C. L. Shao, C. Wang, J. Y. Zhang,Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Chem. Phys. 123, 134701 (2005).
    [62] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, Adv. Mater. (Weinheim, Ger.) 15, 1991 (2003).
    [63] G. Srinivasan a,b, R.T. Rajendra Kumar c, J. Kumar, Opt. Mater. (2007).
    [64] T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
    [65] B. B. Li, X.Q. Xiu, R. Zhang, Z. L. Xie, Y. Chen, Y. Shi, P. Han, Y. D. Zheng, IEEE, 202 (2004).
    [66] A. Umar, B. Karunagaran, E. K. Suh and Y. B. Hahn, Nanotechnology, 17, 4072 (2006).
    [67] M. H. Yoon, S. H. Lee, H. L. Park, H.K. Kim, M. S. Jang, Journal of Materials Science Letters, 21, 1703 (2002).
    [68] M.A. Rueter, J.M. Vohs, J. Vac. Sci. Technol. A. 9, 2916 (1991).
    [69] G. P. Schwartz, W. A. Sunder and J. E. Griffiths, Appl. Phys. Lett. 37, 925 (1980).
    [70] Manabu GOMI, Naoko OOHIRA, Kenichi OZAKI and Mikio KOYANO, Jpn. J. Appl. Phys. 42, 481 (2003).

    下載圖示 校內:2010-06-28公開
    校外:2012-06-28公開
    QR CODE