簡易檢索 / 詳目顯示

研究生: 謝侑哲
Hsieh, Yu-Che
論文名稱: 一種非侵入式光驅動技術對斑馬魚幼魚進行輸送與毒性測試之研究
Transportation and toxicity testing of zebrafish larvae through a noninvasive light driven technique integrated with a microfluidic device
指導教授: 陳嘉元
Chen, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 斑馬魚光驅動微流道乙醇毒性測試
外文關鍵詞: Zebrafish, Light driven, Microchannel, Ethanol toxicity
相關次數: 點閱:59下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了在成像平台上傳輸斑馬魚幼魚,長期以來一直透過使用鑷子或機械泵浦進行傳輸。這些方法在運輸過程中對斑馬魚幼魚的脆弱身體會產生不利的損害。為了解決這個問題,在本論文中,設計一種在微流體環境中運輸斑馬魚幼魚的光驅動技術。針對斑馬魚幼魚的視覺運動行為反應通過電腦動畫產生移動光柵(條紋)控制,用於在微流體內運輸。據觀察結果討論,在1.5Hz的最佳光柵頻率和1:1的光柵寬度比下,授精5天後斑馬魚幼魚可分別在0.63和2.49s的最小和最大時間段內運輸。這項技術可用於在微流體環境內斑馬魚幼魚以及斑馬魚核心設施的多自動運輸。此外,也利用此技術進行斑馬魚毒性檢測觀察其行為差異性作為判斷此物質對於斑馬魚幼魚是否有影響,由於目前乙醇為已知的發展毒性物質,對於胚胎生長有明顯影響性,在本論文中採用不同濃度乙醇作為待測液體,據觀察結果討論,在體積濃度 1.5 % (vol/vol) 下其身體長度與控制組差異達23 % 此過程需使用成像系統進行觀察,此外在行為觀測中其傳輸時間差異達54 %,在觀測中結果中,乙醇對於行為影響可以明顯被觀測出來,因此光驅動技術不僅可以作為斑馬魚於微流道平台中之傳輸用途也可作為毒性檢測中之初步的觀察以判斷此物質對於斑馬魚是否有害。

    Transferring the zebrafish larvae on an imaging platform has long been performed manually by the use of forceps or through mechanical pumping. These methods induce detrimental damages to the fragile bodies of zebrafish larvae during the transportation. To address this issue, in this work we are devising a light driven technique to transport zebrafish larvae within a microfluidic environment. In particular, an optomotor behavioral response of the zebrafish larvae was controlled through the computer animated moving gratings for their transportation within a microfluidics chamber. It was observed that with an optimum grating frequency of 1.5 Hz and a grating width ratio of 1:1, a 5 days-post fertilization zebrafish larva can be transported within minimum and maximum time periods of 0.63 and 2.49 s, respectively. This proposed technique can be utilized towards multi-automatic transportation of zebrafish larvae within the microfluidic environment as well as the zebrafish core facility. In addition to it, this platform was used to realize the behavioral differences of juvenile larvae to realize the effect of ethanol toxicity.

    摘要 I 誌謝 X 目錄 XI 圖目錄 XIV 表目錄 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 斑馬魚 2 1.2.1 斑馬魚動物模型 2 1.2.2 斑馬魚行為與神經學發展 5 1.2.2.1 眼動反應 (Optokinetic responses) 6 1.2.2.2 視動反應 (Optomotor responses) 7 1.2.2.3 獵物追蹤與補食 (Prey tracking and capture) 8 1.2.3 斑馬魚生物毒性測試發展 9 1.2.3.1 斑馬魚檢測乙醇毒性 11 1.3 斑馬魚檢測裝置發展 14 1.3.1 微流體晶片 17 1.3.2 胚胎微流體陣列系統 20 1.3.3 微流體陣列捕魚系統 22 1.3.4 微流體通路系統 24 1.3.5 微流體灌注平台 26 1.3.6 片段技術系統裝置 28 1.3.7 液滴輸送技術裝置 29 1.3.8 全自動旋轉系統 30 1.3.9自動化微注射系統 33 1.4 研究動機 35 1.5 研究目標 36 第二章 研究方法 37 2.1 斑馬魚培育 37 2.1.1 斑馬魚配對與胚胎成長 38 2.1.1.2 乙醇濃度調配與暴露時間 39 2.2微流道裝置 40 2.2.1 微流道設計 40 2.2.2 微流道製程 42 2.3 光驅動實驗架設 46 2.4 光驅動實驗操作與量化方式 49 2.4.1 光驅動實驗操作 49 2.4.2 移動時間量化方式 51 2.4.3 軌跡量化方式 52 2.4.4 統計學分析不同方向移動時間 54 2.4.5 軌跡相關係數分析 56 2.5 毒性檢測(乙醇)實驗架設 57 2.5.1 斑馬魚身體變化量測 58 第三章 結果與討論 59 3.1 不同天數斑馬魚反應測試 59 3.2 影像條紋最佳頻率與寬度比結果 61 3.3 不同軌跡傳輸影響結果 63 3.4 軌跡與影像關係結果 65 3.5 乙醇對斑馬魚身體影響 67 3.6 乙醇對斑馬魚行為影響 69 第四章 結論與未來展望 71 4.1 結論 71 4.2 未來展望 73 參考文獻 74 作者經歷 81

    [1] S. G. Vascotto, Y. Beckham, and G. M. Kelly, "The zebrafish's swim to fame as an experimental model in biology," Biochemistry and cell biology, vol. 75, pp. 479-485, 1997.
    [2] E. C. Roosen-Runge, "On the early development—bipolar differentiation and cleavage—of the zebra fish, Brachydanio rerio," The Biological Bulletin, vol. 75, pp. 119-133, 1938.
    [3] G. Streisinger, F. Singer, C. Walker, D. Knauber, et al., "Segregation analyses and gene-centromere distances in zebrafish," Genetics, vol. 112, pp. 311-319, 1986.
    [4] K. Howe, M. D. Clark, C. F. Torroja, J. Torrance, et al., "The zebrafish reference genome sequence and its relationship to the human genome," Nature, vol. 496, p. 498, 2013.
    [5] C. Y. Chen and C. M. Cheng, "Microfluidics expands the zebrafish potentials in pharmaceutically relevant screening," Advanced healthcare materials, vol. 3, pp. 940-945, 2014.
    [6] M. B. Orger, "The Cellular Organization of Zebrafish Visuomotor Circuits," Current Biology, vol. 26, pp. R377-R385, 2016.
    [7] C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, et al., "High-throughput in vivo vertebrate screening," Nature methods, vol. 7, pp. 634-636, 2010.
    [8] S. E. Brockerhoff, J. B. Hurley, U. Janssen-Bienhold, S. Neuhauss, et al., "A behavioral screen for isolating zebrafish mutants with visual system defects," Proceedings of the National Academy of Sciences, vol. 92, pp. 10545-10549, 1995.
    [9] H. W. Laale, "The biology and use of zebrafish, Brachydanio rerio in fisheries research," Journal of Fish Biology, vol. 10, pp. 121-173, 1977.
    [10] J.-P. Levraud, N. Palha, C. Langevin, and P. Boudinot, "Through the looking glass: witnessing host–virus interplay in zebrafish," Trends in microbiology, vol. 22, pp. 490-497, 2014.
    [11] C. B. Kimmel, J. Patterson, and R. O. Kimmel, "The development and behavioral characteristics of the startle response in the zebra fish," Developmental psychobiology, vol. 7, pp. 47-60, 1974.
    [12] C. A. MacRae and R. T. Peterson, "Zebrafish as tools for drug discovery," Nature reviews Drug discovery, vol. 14, p. 721, 2015.
    [13] A. V. Kalueff, D. J. Echevarria, and A. M. Stewart, "Gaining translational momentum: more zebrafish models for neuroscience research," ed: Elsevier, 2014.
    [14] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner, "The structure of the nervous system of the nematode Caenorhabditis elegans," Philos Trans R Soc Lond B Biol Sci, vol. 314, pp. 1-340, 1986.
    [15] J. A. Lister, C. P. Robertson, T. Lepage, S. L. Johnson, et al., "Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate," Development, vol. 126, pp. 3757-3767, 1999.
    [16] C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, et al., "Stages of embryonic development of the zebrafish," Developmental dynamics, vol. 203, pp. 253-310, 1995.
    [17] R. Portugues and F. Engert, "The neural basis of visual behaviors in the larval zebrafish," Current opinion in neurobiology, vol. 19, pp. 644-647, 2009.
    [18] E. A. Schmitt and J. E. Dowling, "Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses," Journal of Comparative Neurology, vol. 404, pp. 515-536, 1999.
    [19] O. Rinner, J. M. Rick, and S. C. Neuhauss, "Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response," Investigative ophthalmology & visual science, vol. 46, pp. 137-142, 2005.
    [20] D. T. Clark, "VISUAL RESPONSES IN DEVELOPING ZEBRAFISH (BRACHYDANIO RERIO)," 1982.
    [21] S. C. Neuhauss, "Behavioral genetic approaches to visual system development and function in zebrafish," Developmental Neurobiology, vol. 54, pp. 148-160, 2003.
    [22] I. H. Bianco, A. R. Kampff, and F. Engert, "Prey capture behavior evoked by simple visual stimuli in larval zebrafish," Frontiers in systems neuroscience, vol. 5, p. 101, 2011.
    [23] J. W. Trevan, "The error of determination of toxicity," Proc. R. Soc. Lond. B, vol. 101, pp. 483-514, 1927.
    [24] G. Chen and P. A. White, "The mutagenic hazards of aquatic sediments: a review," Mutation Research/Reviews in Mutation Research, vol. 567, pp. 151-225, 2004.
    [25] C. Wedekind, B. von Siebenthal, and R. Gingold, "The weaker points of fish acute toxicity tests and how tests on embryos can solve some issues," Environmental pollution, vol. 148, pp. 385-389, 2007.
    [26] L. Guilhermino, T. Diamantino, M. C. Silva, and A. Soares, "Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity?," Ecotoxicology and environmental safety, vol. 46, pp. 357-362, 2000.
    [27] E. Lammer, G. Carr, K. Wendler, J. Rawlings, et al., "Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test?," Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, vol. 149, pp. 196-209, 2009.
    [28] M. R. Embry, S. E. Belanger, T. A. Braunbeck, M. Galay-Burgos, et al., "The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research," Aquatic Toxicology, vol. 97, pp. 79-87, 2010.
    [29] H. J. Harwood, D. Fountain, and G. Fountain, "Economic cost of alcohol and drug abuse in the United States, 1992: a report," Addiction (Abingdon, England), vol. 94, p. 631, 1999.
    [30] S. Giles, P. Boehm, C. Brogan, and J. Bannigan, "The effects of ethanol on CNS development in the chick embryo," Reproductive Toxicology, vol. 25, pp. 224-230, 2008.
    [31] S. Ali, D. L. Champagne, A. Alia, and M. K. Richardson, "Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience," PLoS One, vol. 6, p. e20037, 2011.
    [32] R. Gerlai, M. Lahav, S. Guo, and A. Rosenthal, "Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects," Pharmacology biochemistry and behavior, vol. 67, pp. 773-782, 2000.
    [33] Y. Fernandes and R. Gerlai, "Long‐Term Behavioral Changes in Response to Early Developmental Exposure to Ethanol in Zebrafish," Alcoholism: Clinical and Experimental Research, vol. 33, pp. 601-609, 2009.
    [34] P. Blader and U. Strähle, "Ethanol impairs migration of the prechordal plate in the zebrafish embryo," Developmental biology, vol. 201, pp. 185-201, 1998.
    [35] R. Gerlai, F. Ahmad, and S. Prajapati, "Differences in Acute Alcohol‐Induced Behavioral Responses Among Zebrafish Populations," Alcoholism: Clinical and Experimental Research, vol. 32, pp. 1763-1773, 2008.
    [36] R. MacPhail, J. Brooks, D. Hunter, B. Padnos, et al., "Locomotion in larval zebrafish: influence of time of day, lighting and ethanol," Neurotoxicology, vol. 30, pp. 52-58, 2009.
    [37] B. Lockwood, S. Bjerke, K. Kobayashi, and S. Guo, "Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening," Pharmacology Biochemistry and Behavior, vol. 77, pp. 647-654, 2004.
    [38] J. Bilotta, S. Saszik, C. M. Givin, H. R. Hardesty, et al., "Effects of embryonic exposure to ethanol on zebrafish visual function," Neurotoxicology and Teratology, vol. 24, pp. 759-766, 2002.
    [39] J. Bilotta, J. A. Barnett, L. Hancock, and S. Saszik, "Ethanol exposure alters zebrafish development: a novel model of fetal alcohol syndrome," Neurotoxicology and teratology, vol. 26, pp. 737-743, 2004.
    [40] C. A. Dlugos and R. A. Rabin, "Ocular deficits associated with alcohol exposure during zebrafish development," Journal of Comparative Neurology, vol. 502, pp. 497-506, 2007.
    [41] J. I. Matsui, A. L. Egana, T. R. Sponholtz, A. R. Adolph, et al., "Effects of ethanol on photoreceptors and visual function in developing zebrafish," Investigative ophthalmology & visual science, vol. 47, pp. 4589-4597, 2006.
    [42] Y.-X. Li, H.-T. Yang, M. Zdanowicz, J. K. Sicklick, et al., "Fetal alcohol exposure impairs Hedgehog cholesterol modification and signaling," Laboratory investigation, vol. 87, p. 231, 2007.
    [43] M. J. Carvan III, E. Loucks, D. N. Weber, and F. E. Williams, "Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis," Neurotoxicology and teratology, vol. 26, pp. 757-768, 2004.
    [44] E. J. Loucks and S. C. Ahlgren, "Deciphering the role of Shh signaling in axial defects produced by ethanol exposure," Birth Defects Research Part A: Clinical and Molecular Teratology, vol. 85, pp. 556-567, 2009.
    [45] E. J. Loucks, T. Schwend, and S. C. Ahlgren, "Molecular changes associated with teratogen‐induced cyclopia," Birth Defects Research Part A: Clinical and Molecular Teratology, vol. 79, pp. 642-651, 2007.
    [46] B. Kashyap, L. C. Frederickson, and D. L. Stenkamp, "Mechanisms for persistent microphthalmia following ethanol exposure during retinal neurogenesis in zebrafish embryos," Visual neuroscience, vol. 24, pp. 409-421, 2007.
    [47] I. Bergwerf, N. De Vocht, B. Tambuyzer, J. Verschueren, et al., "Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice," BMC biotechnology, vol. 9, p. 1, 2009.
    [48] C. Xu, S. Volkery, and A. F. Siekmann, "Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish," Nature protocols, vol. 10, p. 2064, 2015.
    [49] M. M. Crane, K. Chung, J. Stirman, and H. Lu, "Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms," Lab on a Chip, vol. 10, pp. 1509-1517, 2010.
    [50] M. F. Yanik, C. B. Rohde, and C. Pardo-Martin, "Technologies for micromanipulating, imaging, and phenotyping small invertebrates and vertebrates," Annual review of biomedical engineering, vol. 13, pp. 185-217, 2011.
    [51] A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, "Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope," Development, vol. 139, pp. 3242-3247, 2012.
    [52] Y.-c. Shen, D. Li, A. Al-Shoaibi, T. Bersano-Begey, et al., "A student team in a University of Michigan biomedical engineering design course constructs a microfluidic bioreactor for studies of zebrafish development," Zebrafish, vol. 6, pp. 201-213, 2009.
    [53] J. Akagi, K. Khoshmanesh, B. Evans, C. J. Hall, et al., "Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos," PloS one, vol. 7, p. e36630, 2012.
    [54] J. Akagi, K. Khoshmanesh, C. J. Hall, J. M. Cooper, et al., "Fish on chips: Microfluidic living embryo array for accelerated in vivo angiogenesis assays," Sensors and Actuators B: Chemical, vol. 189, pp. 11-20, 2013.
    [55] W. Wang, X. Liu, D. Gelinas, B. Ciruna, et al., "A fully automated robotic system for microinjection of zebrafish embryos," PloS one, vol. 2, p. e862, 2007.
    [56] L. L. Bischel, B. R. Mader, J. M. Green, A. Huttenlocher, et al., "Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging," Lab on a Chip, vol. 13, pp. 1732-1736, 2013.
    [57] X. Lin, S. Wang, X. Yu, Z. Liu, et al., "High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates," Lab on a Chip, vol. 15, pp. 680-689, 2015.
    [58] F. Yang, Z. Chen, J. Pan, X. Li, et al., "An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics," Biomicrofluidics, vol. 5, p. 024115, 2011.
    [59] D. Choudhury, D. van Noort, C. Iliescu, B. Zheng, et al., "Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development," Lab on a Chip, vol. 12, pp. 892-900, 2012.
    [60] E. Wielhouwer, S. Ali, A. Al-Afandi, M. Blom, et al., "HG j. vanMil, J. Chicken, R. van ‘t Oever and MK Richardson," Lab Chip, vol. 11, pp. 1815-1824, 2011.
    [61] Y. Li, F. Yang, Z. Chen, L. Shi, et al., "Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity," PloS one, vol. 9, p. e94792, 2014.
    [62] A. Noori, P. R. Selvaganapathy, and J. Wilson, "Microinjection in a microfluidic format using flexible and compliant channels and electroosmotic dosage control," Lab on a Chip, vol. 9, pp. 3202-3211, 2009.
    [63] T. Bansal, J. Lenhart, T. Kim, C. Duan, et al., "Patterned delivery and expression of gene constructs into zebrafish embryos using microfabricated interfaces," Biomedical microdevices, vol. 11, pp. 633-641, 2009.
    [64] A. Funfak, A. Brösing, M. Brand, and J. M. Köhler, "Micro fluid segment technique for screening and development studies on Danio rerio embryos," Lab on a Chip, vol. 7, pp. 1132-1138, 2007.
    [65] M. Erickstad, L. A. Hale, S. H. Chalasani, and A. Groisman, "A microfluidic system for studying the behavior of zebrafish larvae under acute hypoxia," Lab on a Chip, vol. 15, pp. 857-866, 2015.
    [66] N. P. Macdonald, F. Zhu, C. Hall, J. Reboud, et al., "Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays," Lab on a Chip, vol. 16, pp. 291-297, 2016.
    [67] R. Candelier, M. S. Murmu, S. A. Romano, A. Jouary, et al., "A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish," Scientific reports, vol. 5, p. 12196, 2015.
    [68] F. Zhu, A. Wigh, T. Friedrich, A. Devaux, et al., "Automated lab-on-a-chip technology for fish embryo toxicity tests performed under continuous microperfusion (μFET)," Environmental science & technology, vol. 49, pp. 14570-14578, 2015.
    [69] R. Samuel, R. Stephenson, P. Roy, R. Pryor, et al., "Microfluidic-aided genotyping of zebrafish in the first 48 h with 100% viability," Biomedical microdevices, vol. 17, p. 43, 2015.
    [70] C. Zheng, H. Zhou, X. Liu, Y. Pang, et al., "Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos," Chemical Communications, vol. 50, pp. 981-984, 2014.
    [71] Y. Li, X. Yang, Z. Chen, B. Zhang, et al., "Comparative toxicity of lead (Pb2+), copper (Cu2+), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip," Biomicrofluidics, vol. 9, p. 024105, 2015.
    [72] E. M. Wielhouwer, S. Ali, A. Al-Afandi, M. T. Blom, et al., "Zebrafish embryo development in a microfluidic flow-through system," Lab on a Chip, vol. 11, pp. 1815-1824, 2011.
    [73] S. U. Son and R. L. Garrell, "Transport of live yeast and zebrafish embryo on a droplet (“digital”) microfluidic platform," Lab on a Chip, vol. 9, pp. 2398-2401, 2009.
    [74] T.-Y. Chang, C. Pardo-Martin, A. Allalou, C. Wählby, et al., "Fully automated cellular-resolution vertebrate screening platform with parallel animal processing," Lab on a Chip, vol. 12, pp. 711-716, 2012.
    [75] K. Mani, Y.-C. Hsieh, B. Panigrahi, and C.-Y. Chen, "A noninvasive light driven technique integrated microfluidics for zebrafish larvae transportation," Biomicrofluidics, vol. 12, p. 021101, 2018.

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE