| 研究生: |
方冠捷 Fang, Kuan-Chieh |
|---|---|
| 論文名稱: |
熱成像技術於散熱器底部未知暫態熱通量之預測 The estimation of unknown bottom transient heat flux for heat sink with thermography techniques |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 共軛梯度反算 、熱通量預測 、暫態 |
| 外文關鍵詞: | Conjugate Gradient Method, Transient Inverse Heat Conduction-Convection Conjugated Problem |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工程領域的熱傳問題中,常用傳統的正算法來求解物理量。正算是指給定輸入條件,例如熱對流或熱傳導機制,從而獲得確定的輸出結果,這類問題被稱為正算問題(Direct Problem)。因為我們可以利用已知的物理法則和條件,通過一系列的計算來得到想要的結果。然而,在實際的工程問題中,存在許多物理量是無法直接測量或計算的。這些物理量往往因為設備的限制或環境的複雜性而難以直接獲得。因此,為了獲得這些無法直接測量的物理量,我們必須利用反算法。反算法是根據其他已知的參數或測量資料來反向推算未知的物理量,這就是所謂的反算問題(Inverse Problem)。反算問題的解決對於系統的性能優化和故障診斷具有重要意義。
本論文可以分為兩個章節,均探討暫態熱傳導與熱對流共軛之反算問題於未知暫態熱通量之預測。在探討未知暫態熱通量相關的反算問題時皆以商業軟體CFD-ACE+來建立物體幾何模型與網格,再使用共軛梯度法(Conjugate Gradient Method)藉由已知的邊界條件,配合模擬或真實之溫度感測器測量物體表面溫度來預測未知暫態熱通量。
第二章中,我們考慮了一個在底部有未知暫態熱通量的平板,並研究了該平板模型在不同風速、板厚與時間的條件下對未知暫態熱通量預測的影響。結果顯示,當使用平板且不考慮量測誤差時,我們可以準確預測出熱通量,而入口速度並不會對預測結果造成影響。隨後,我們加入量測誤差來觀察其對反算結果的影響。最終的結論是,由於反算問題是不適定的,所以在厚度較大的情況下,底部熱通量對表面溫度的影響變小,即使我們能準確預測表面溫度,但仍然難以精確預測底部的熱通量。
第三章為實驗部分,旨在驗證第二章數值模擬的可靠性。並且考慮到實際工程的應用我們設計了散熱器模型,使用紅外線熱像儀測量散熱器表面溫度,並利用熱像儀分析軟體TAS20和Python內插方法獲取所需的溫度分佈。接著,我們運用共軛梯度法(Conjugate Gradient Method)結合CFD-ACE+商業軟體,根據散熱器間空隙的表面溫度來預測散熱器底部面的未知暫態熱通量。
An inverse conjugate heat transfer problem is examined to estimate the temporally and spatially dependent unknown surface heat flux using thermography techniques via a thermal camera in a three-dimensional domain. In the present study the interface conditions of plate and air domains are obtained using perfect thermal contact condition, therefore it is defined as inverse conjugate heat transfer problem. The conjugate gradient method (CGM) is chosen as the optimization algorithm for this inverse problem and the advantage of CGM lies in its ability to handle problems without prior knowledge of the functional form of the unknown functions. This allows for the correction and estimation of a large number of unknowns in each iteration, consistently yielding accurate estimates.
This thesis can be divided into two chapters, both discussing the inverse problems of transient heat conduction and heat convection for predicting unknown transient heat flux. In exploring inverse problems related to unknown transient heat flux, the commercial software CFD-ACE+ is used to establish the geometry and mesh of the object. The Conjugate Gradient Method (CGM) is then applied to predict the unknown transient heat flux using known boundary conditions based on the simulated or real temperature measurements on the object's surface.
1. Beck, J.V., Blackwell, B., Clair, C.R.St. ,"Inverse Heat Conduction: Ill- Posed Problems", Wiley, Interscience,vol. 67,pp.212-213, 1985
2. M. Asif, A. Tariq and K. M. Singh, Estimation of thermal contact conductance using transient approach with inverse heat conduction problem, Heat and Mass Transfer, 55 (2019), 3243 – 3264.
doi: https://doi.org/10.1007/s00231-019-02617-x .
3. F. Bozzoli, L. Cattani, A. Mocerino, S. Rainieri and F. S. V. Bazán, A novel method for estimating the distribution of convective heat flux in ducts: Gaussian filtered singular value decomposition, Inverse Problems in Science and Engineering, 27 (2019), 1595 – 1607. doi: https://doi.org/10.1080/17415977.2018.1540615 .
4. M. Cui, J. Mei, B.-W. Zhang, B.-B. Xu, L. Zhou and Y. Zhang, Inverse identification of boundary conditions in a scramjet combustor with a regenerative cooling system , Applied Thermal Engineering, 134 (2018), 555 – 563 .
5. Z. Guo , T. Lu and B. Liu, Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration , Journal of Thermal Science , 26 (2017), 160 – 165 . doi: https://doi.org/10.1007/s11630-017-0925-8 .
6. A. B. Kostin, Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations, Computational Mathematics and Mathematical Physics, 54 (2014) 797– 810.
7. C.-Y. Ku, J.-E. Xiao, W.-P. Huang, W. Yeih and C.-Y. Liu, On Solving Two-Dimensional Inverse Heat Conduction Problems Using the Multiple Source Meshless Method, Appl. Sci. 2019, 9(13), 2629; https://doi.org/10.3390/app9132629
8. D. Lukyanenko, T. Yeleskina, I. Prigorniy, T. Isaev , A. Borzunov and M. Shishlenin, Inverse Problem of Recovering the Initial Condition for a Nonlinear Equation of the Reaction–Diffusion–Advection Type by Data Given on the Position of a Reaction Front with a Time Delay, Mathematics, 9(2021), 342; https://doi.org/10.3390/math9040342
9. C. P. Naveira-Cotta, R. M. Cotta, H.R.B. Orlande, Inverse analysis of forced convection in micro-channels with slip flow via integral transforms and Bayesian inference, International Journal of Thermal Sciences 49 (2010) 879–888.
10. D. Rothermel and T. Schuster, Solving an inverse heat convection problem with an implicit forward operator by using a projected quasi-Newton method, Inverse Problems 37 (2021) 045014.
11. J.R. VanderVeer, Y. Jaluria, Solution of the inverse jet in a crossflow problem by a predictor–corrector technique, Int. J. Heat Mass Transf. 89 (2015) 929–936.
12. J.R. VanderVeer, and Y. Jaluria, Solution of an inverse convection problem by a predictor–corrector approach. International Journal of Heat and Mass Transfer, 65 (2013) 123-130.
13. M. Prud’homme, T.H. Nguyen, Solution of inverse free convection problems by conjugate gradient method: effects of Rayleigh number, Int. J. Heat Mass Transf. 44 (2001) 2011–2027.
14. J.R. VanderVeer, and Y. Jaluria, Optimization of an inverse convection solution strategy, International Journal of Heat and Mass Transfer, 73 (2014) 664-670.
15. A. Bangian-Tabrizi, and Y. Jaluria, An optimization strategy for the inverse solution of a convection heat transfer problem, International Journal of Heat and Mass Transfer, 124 (2018) 1147-1155.
16. D. Liu, F. Wang, J. H. Yan, Q. X. Huang, Y. Chi, K. F. Cen, Inverse radiation problem of temperature field in three-dimensional rectangular enclosure containing inhomogeneous, anisotropically scattering media, Int., International Journal of Heat and Mass Transfer 51 (2008) 3434–3441.
17. L. H. Liu, H. P. Tan, Q. Z. Yu, Inverse radiation problem of sources and emissivities in one-dimensional semitransparent media, International Journal of Heat and Mass Transfer 44 (2001) 63–72.
18. H. M. Park, T. Y. Yoon, Solution of the inverse radiation problem using a conjugate gradient method, International Journal of Heat and Mass Transfer 43 (2000) 1767–1776
19. S. Wen, H. Qi, Y.-T. Ren, J.-P. Sun, L.-M. Ruan, Solution of inverse radiation-conduction problems using a Kalman filter coupled with the recursive least–square estimator, International Journal of Heat and Mass Transfer 111 (2017) 582–592.
20. C. H. Huang and Kai-Jyun He, A Steady-State Inverse Heat Conduction-Convection Conjugated Problem in Determining Unknown Spatially Dependent Surface Heat Flux, Case Studies in Thermal Engineering, Vol. 39, 2022. https://doi.org/10.1016/j.csite.2022.102411
21. C. H. Huang and Kai-Jyun He, An Experimental Inverse Problem in Determining Spatially Varying Surface Heat Flux Using Measured Temperature Readings, Case Studies in Thermal Engineering, Vol. 49, 2023. https://doi.org/10.1016/j.csite.2023.103227
22. O. M. Alifanov, Inverse Heat Transfer Problems, Springer-Verlag, 1994.
23. J. Zhou, Y. Zhang, J. K. Chen, Z. C. Feng, Inverse estimation of surface heating condition in a three-dimensional object using conjugate gradient method, Int. J. Heat and Mass Transfer, 53 (2010) 2643–2654.
24. C.H. Huang and S. P. Wang, A Three-Dimensional Inverse Heat Conduction Problem in Estimating Surface Heat Flux by Conjugate Gradient Method, Int. J. Heat and Mass Transfer, 42 (1999) 3387-3403.
25. C.H. Huang and W.C. Chen, A Three-Dimensional Inverse Forced Convection Problem in Estimating Surface Heat Flux by Conjugate Gradient Method, Int. J. Heat and Mass Transfer, 43 (2000) 3171-3181.
26. C. Zhang, B.-W. Li a, R.-R. Zhou, P.-X. Li, L.-Y. Huang, Inverse analysis of radiative properties of internal medium and surface for cylindrical system using CSM-CGM approach, International Journal of Thermal Sciences 190 (2023) 108329.
27. CFD-ACE+ user’s manual, ESI-CFD Inc., (2020)
28. IMSL by Perforce © 2021 Perforce Software, Inc.
校內:2026-08-01公開