簡易檢索 / 詳目顯示

研究生: 張簡建良
Chang-Chien, Chien-Liang
論文名稱: 自充填混凝土梁在彎矩、剪力與扭矩組合載重下之承力行為研究
Behavior of SCC-Reinforced Concrete Beams under Combined Bending, shear and Torsion
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 78
中文關鍵詞: 表面應變組合載重彎矩扭矩剪力
外文關鍵詞: shear, bending, torsion
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   自充填混凝土由於具有良好之流動性,在國內外的研發與應用實例普受重視,本論文旨在探討自充填混凝土梁在配置高撓曲鋼筋量及承受低扭矩作用下,受到彎矩(M)、剪力(V)與扭矩(T)組合載重之承力行為,經由試驗方法,探討梁在T/M=1/10及1/8條件下扭矩對撓曲強度及韌性之折減效應,實心斷面試體與空心斷面試體之差異性,與試體表面主應變之變化。

      本研究共規劃10根斷面尺寸為250×350mm之自充填混凝土梁矩形斷面試體,主要變數為扭矩和彎矩比例值(T/M)及實心與空心斷面等。

      主要研究結果如下:(1)實心試體之實測開裂強度與Collins的預測值之比值約為1.28~1.29倍,而空心試體則約為0.8~0.9倍,(2)實心試體之實測極限強度與Elfgren的預測值的比值約1.09~1.13倍,而空心試體則約為1.07~1.08倍,(3)試體達極限階段時,頂面混凝土之主張應變會隨著T/M比例值的增加而增大,而隨著主張應變的增加,頂面混凝土之極限主壓應變值將因此而下降。(4)依據試驗結果,在相同縱向鋼筋量下,實心試體與空心試體之撓曲強度會隨著T/M比值的增加而遞減,實心試體約有10~13%之遞減,而空心試體約有5~10%之遞減,(5)以Collons之理論預測開裂強度時,實心試體SCC梁與NC梁試驗值與理論值之比值為1.28與1.27倍,空心試體SCC梁與NC梁之比值為0.80與0.94倍;與Elfgren之極限強度理論值比較,SCC梁與NC梁之比較結果約略相同,但均高於理論值,因此SCC梁可達到試驗設計之強度要求。

    none

    摘要-------------------------------------------------------------------Ⅰ. 目錄-------------------------------------------------------------------Ⅱ. 表目錄-----------------------------------------------------------------Ⅳ. 圖目錄-----------------------------------------------------------------Ⅴ. 符號表-----------------------------------------------------------------Ⅷ. 第一章 緒 論 1-1 研究背景------------------------------------------------------------1. 1-2 研究目的------------------------------------------------------------5. 第二章 試驗規劃 2-1 試體規劃及製作----------------------------------------------------- 6. 2-1-1 試體規劃----------------------------------------------------------6. 2-1-2 試體材料----------------------------------------------------------7. 2-1-3 試體製作----------------------------------------------------------7. 2-2 試驗方法----------------------------------------------------------- 9. 第三章 結果與討論 3-1試體之整體承力行為--------------------------------------------------11. 3-1-1 裂縫形式與破壞模式-----------------------------------------------11. 3-1-2 試體之開裂強度---------------------------------------------------16. 3-1-3 試體之極限強度---------------------------------------------------18. 3-2 試體之韌性-------------------------------------------------------- 20. 3-2-1加載點之載重與位移關係--------------------------------------------20. 3-2-2測試區之彎矩與曲率關係--------------------------------------------21. 3-3試體局部變形之探討--------------------------------------------------23. 3-4-1試體各面平均主應變之發展趨勢--------------------------------------23. 3-4-2 T/M比值對平均主應變之影響----------------------------------------24. 3-4-2 T/M比值對平均主應變角之影響--------------------------------------27. 3-4自充填混凝土梁與普通混凝土梁之比較----------------------------------29. 3-4-1自充填混凝土的材料性質--------------------------------------------29. 3-4-2自充填混凝土之承力特性--------------------------------------------31. 第四章 結論------------------------------------------------------------33. 參考文獻---------------------------------------------------------------76.

    1.Lessig, N. N., “Determination of Load-Carrying Capacity of Rectangular
    Reinforced Concrete Elements Subjected to Flexural and torsion,” Trudy
    No. 5, Institut Betona i Zhelezobetona (Concrete and Reinforced Concrete
    Institute), Moscow, pp. 5-28(in Russian), 1959. Translated by Portland
    Cement Association, Foreign Literature study No. 371. Available from S.L.A.
    Translation Center, The John Crerar Library Translation Center, 35 W. 33rd
    St., Chicago, Illinois 60616.
    2.State Committee on Construction of the USSR council of Ministers,
    “Structural Standards and Regulations,” SNiP H-B, 1-62, State Publishing
    Offices for literature on Structural Engineering, Architecture and
    Structural Materials, Moscow, 1962 (in Russian).
    3.Collins, M. P. ; Walsh, P. F. ; Archer, F. E. ; and Hall, A. S.,
    “Reinforced Concrete Beam Subjected to Combined Torsion, Bending and
    Shear,” UNICIV Report, No. R-14, University of New South Wales, October
    1965.
    4.Collins, M. P. ; Walsh, P. F. ; Archer, F. E. ; and Hall, A. S., “Ultimate
    Strength of Reinforced Concrete Beam Subjected to Combined Torsion and
    Bending,” Torsion of Structural Concrete, SP-18, American Concrete
    Institute, Detroit, pp. 279-420, 1968.
    5.Elfgren, L. ; Karlsson, I. ; and Losberg, A., “Torsion-Bending-Shear
    Interaction for Concrete Beams, ”Journal of the Structural Division,
    ASCE, V. 100, No. ST 8, pp.1657-1676, Aug. 1974.
    6.Elfgren, L., “Reinforced Concrete Beams Loaded in Combined Torsion, Bending
    and Shear,” Publication 71:3, Division of Concrete Structures, Chalmers
    University of Technology, Goteborg, Sweden, 1972.
    7.Hsu, T. C., “Torsion of Reinforced concrete,” Van Nostrand Reinhold, New
    York, pp. 516, 1984.
    8.McMullen, A. E. and Warwaruk, J., ”The Torsion Strength of Rectangular
    Reinforced Concrete Beams Subjected to Combined Loading, ”Research Report,
    University of Alberta, Edmonton, Canada, July 1967.
    9.Collins, M. P., and Mitchell, D., “Shear and Torsion Design of
    Prestressed and Non-Prestressed Concrete Beams,” PCI JOURNAL, V.5., No.5,
    pp.44-76, Sept.-Oct. 1980.
    10.賴裕光,「鋼筋混凝土梁受純扭矩作用下剪力流有效厚度之研究」,國立成功大學土木
    工程研究所碩士論文,1998。
    11.方一匡,張簡建良,林廷駿「自充填混凝土梁在彎矩、剪力及扭矩組合載重之承力行
    為」,高性能混凝土在結構工程應用之研討會,國科會工程科技推廣中心主辦,民國94
    年。
    12.岡村甫,小澤一雅,「利用高性能混凝土來達成施工合理化」,高性能混凝土研討會,
    台大土木所主辦,台北,pp.1-8,1992。
    13.方一匡,彭健文,沈勝綿,曾金水,“自充填混凝土於結構合成樓版之應用研究”,國
    科會研究報告,民國93年。
    14.Nagamoto, N. and K. Ozawa, “Mixture Proportions of Self-Concrete,” High
    Performance Concrete: Design and Materials and Advances in Concrete
    Technology, ACI SP-172, pp.623-636, 1997.
    15.Lin, C. H., and Lee, F. S., “Ductility of High-Performance Concrete Beams
    with High-Strength Lateral Reinforcement,” ACI Structural Journal, V.98,
    No.4, pp.600-608, July-Aug. 2001.
    16.林廷駿,「普通混凝土梁在彎矩、剪力與扭矩組合載重下之承力行為研究」,國立成功
    大學土木工程研究所碩士論文,2005。

    下載圖示 校內:2008-07-21公開
    校外:2008-07-21公開
    QR CODE