簡易檢索 / 詳目顯示

研究生: 劉曜嘉
Liu, Yau-chia
論文名稱: 運用修正等效比熱法與液固界面加點法於調整型熱邊界之砷化鎵長晶模式分析
Analysis of GaAs Crystal Growth by Using Modified Effective Specific Heat Method and Interfacial Extra Node Scheme with Modified Furnace Wall Temperature
指導教授: 趙隆山
Chao, Long-sun
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 168
中文關鍵詞: 長晶液固界面加點修正等效比熱法布氏爐砷化鎵
外文關鍵詞: Bridgman furnace, extra node, modified effective specific heat method, GaAs, crystal growth
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為發展新的數學模式來模擬之砷化鎵在布氏爐中之長晶過程。過程中包含之流場、溫度場、濃度場、隨時間變化之固界面的位置與形狀及長晶時於液固界面會釋放出溶質與潛熱,這些都是本文探討的內容。在數值方法上採用有限差分法,對於流場方面則採用SIMPLEC法來計算,溫度場之潛熱效應是採用本文修正之等效比熱法來處理,而濃度場則是提出液固界面加點法來估算液固界面所釋放到液體之溶質。修正等效比熱法和界面加點法與其他解法作比對分析,同時其計算結果與文獻上之正解很吻合。從砷化鎵長晶之分析結果,發現由於液、固態之熱傳導係數差異和潛熱效應來產生自然對流,而自然對流對於溶質再分布有強烈主導性,但在溫度場中其影響則不大。為了減緩界面形狀之撓曲,本文根據液固界面之能量平衡來調整爐壁溫度分佈,近而得到較平坦之界面形狀,並降低流場之強度與改善結晶後軸向和徑向之偏析現象。

    This work is to develop a new mathematical model to simulate the crystal growth in a Bridgman furnace. The relationship among the flow, temperature, concentration fields, the released latent heat and the curved solid/liquid interface was investigated. In this paper, the numerical scheme is the finite different method. The SIMPLEC algorithm is used to solve the flow field. The effective specific heat method is modified to handle the release of latent heat. Adding extra nodes at the interface is proposed to deal with the solute release at the solid/liquid interface. The computational results of these two new methods are compared with those of other methods and very consistent with the exact solutions from the literature. From the analysis of the crystal growth, it can be found that the curved solid/liquid interface is caused by the unequality of liquid and solid thermal conductivities and the latent heat. The curved interface induces the natural convection, which has a great effect on the solute redistribution, but not on the temperature field. To ease off the effect of curved interface, a modified temperature profile of furnace wall was applied according to the heat balance at the solid/liquid interface and its results have less curved interfaces, weaker flow fields and lower segregations along either the radial or the axial direction than those of unmodified one. With the modified method, it could be expected to have the better crystal quality, having more uniform distribution of dopant.

    摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIV 第一章 緒論 1 1-1研究動機 1 1-1-1砷化鎵材料 2 1-1-2半導體材料長晶之方法 3 1-2文獻回顧 5 第二章 理論分析 12 2-1問題描述 12 2-2統御方程式 13 2-3起始條件與邊界條件 14 2-4無因次參數 16 2-5無因次統御方程式 18 2-6無因次起始條件與邊界條件 19 第三章 數值方法 21 3-1交錯網格與控制體積 21 3-2差分方程式與解法 22 3-3流場數值分析 23 3-4溫度場數值分析 27 3-5濃度場數值分析與液固界面加點處理法 32 3-6達到穩態之條件與迭代方式的收斂條件 34 3-7求解的流程 35 第四章 結果與討論 37 4-1修正等效比熱法 37 4-1-1史帝芬問題 38 4-1-2 紐曼問題 39 4-1-3 凝固模式之計算結果與比較 41 4-2濃度場之液固介面加點處理法 43 4-2-1測試模式 44 4-2-2 數值處理方法 45 4-2-3 測試結果 48 4-3砷化鎵長晶之分析 51 4-4調整爐壁溫度分佈的影響 55 第五章 結論 60 參考文獻 63 附錄A 流場之差分方程式 114 附錄B 溫度場之差分方程式 118 附錄C 濃度場之差分方程式. 120 附錄D 液固界面濃度差分方程式 123 自述 168

    [1] H. Ozoe, K. Toh and T. Inoue, “Transition mechanism of flow modes in Czochralaski convection,” J. Cryst. Growth, Vol. 110, pp.472-480,1990.
    [2] S. K. Ghandi, VLSI Fabrication Principles, Silcon and Gallium Arsenide, John Wiley, New York, USA, 1983.
    [3] J. E. Clemans and J. H. Conway, “Vertical Gradient freeze growth of 75 mm diameter semi-insulating III-V Materials,” Proc. 5th. Conf. on Semi-Insulating III-V Materials, Malmo, eds. G. Grossmann and L. Ledebo, Adam Hilger, pp.423-439, 1988.
    [4] C. A. Wang, “Crystal growth and segregation invertical Bridgman configuration,” Ph.D. Thesis, Mass. Inst. Technol., 1984.
    [5] J. A. Kafalas and A. H. Bellows, “Comparative study of the influence of buoyancy driven fluid flow on GaAs crystal growth,” NASA Technical Memorandum, Vol.1, pp.337-347, 1988.
    [6] E. M. Monberg, H. Brown and C. E. Bonner, “The dynamic gradient freeze growth of InP,” J. of Cryst. Growth, Vol.94, pp.109-114, 1989.
    [7] E. M. Sparrow, S. V. Patankar and S. Ramadhyani, “Analysis of melting in the melt Region,” J. Heat Transfer, Vol.99, pp.520-531, 1977.
    [8] N. Ramachandran, J. P. Gupta and Y. Jaluria, “Thermal and fluid flow Effects during solidification in a rectangular enclosure,” Int. J. Heat Mass Transfer, Vol.25, pp.187-194, 1982.
    [9] M. Okada, “Analysis of Heat Transfer During Melting from a Vertical Wall,” Int. J. Heat Mass Transfer, Vol.27 ,pp.2057-2066, 1984.
    [10] S. C. Gupta, “Moving grid numerical scheme for multi-dimensinal solidification with transition temperature range, ”Comput. Methods Appl. Mech. Eng. Vol.189, pp.525-544, 2000.
    [11] R. W. Lewis and K. Ravindran, “Finite element simulation of metal casting,” Int. J. Numer. Methods Eng., Vol.47, pp.29-59, 2000.
    [12]G. Labonia, V. Timchenko, J. E. Simpson, S. V. Garimella, E. Leonardi and G. de Vahl Davis, “Reconstruction and advection of a moving interface in three dimensions on a fixed grid,” Numer. Heat Transfer, Part B., Vol.34, pp.121-138, 1998.
    [13] C. Y. Li, S. V. Garimella and J. E. Simpson, “Fixed-grid front-tracking algorithm for solidification problems, part I: Method and validation,” Numer. Heat Transfer, Part B., Vol.43, pp.117-141, 2003.
    [14] V. R. Voller, C. R. Swaminathan and B. G. Thomas, “Fixed grid techniques for phase change problems. A review,” Int. J. Numer. Methods Eng., Vol.30, pp.875-898, 1990.
    [15] C. Bonacina, G. Comini, A. Fasano and M. Primicerio, “Numerical solution of phase-change problems,” Int. J. Heat Mass Transfer, Vol.16, pp.1825-1832, 1973.
    [16] M. Salcudean and Z. Abdullah, “On the numerical modeling of heat transfer during solidification processes,” Int. J. Numer. Methods Eng., Vol.25, pp.445-473, 1988.
    [17] Hu Henry and A. A. Stavros, “Mathematical modeling of solidification and melting: A review,” Modelling Simul. Mater. Sci. Eng., Vol.4, pp.371-394, 1996.
    [18] G. E. Bell and A. S. Wood, “On the performance of the enthalpy method,” Int. J. Numer. Methods Eng., Vol.19, pp.1583-1592, 1982.
    [19] A. W. Date, “Strong enthalpy formulation for the Stefan problem,” Int. J. Heat Mass Transfer, Vol.34, pp.2231-2283, 1991.
    [20] J. Caldwell and Y. Y. Kwan, “Numerical methods for one-dimensional Stefan problems,” Commun. Numer. Meth. Eng., Vol.20, pp.535-545, 2004.
    [21] V. R. Voller and C. R. Swaminathan, “General source-based method for solidification phase change,” Numerical Heat Transfer, Part B., Vol.19, pp.175-189, 1991.
    [22] T. C. Tszeng , Y. T. Im and S. Kobayashi, “Thermal analysis of solidification by the temperature recovery method,” Int. J. Mach. Tools Manufact., Vol.29, pp.107-120, 1989.
    [23] K. Morgan, R. W. Lewis and O. C. Zienkiewicz, “An improved alogorithm for heat conduction problems with phase change,” Int. J. Num. Methods Eng., Vol.13, pp.1191-1195, 1978.
    [24] J. A. Dantzig, “Modelling liquid-solid phase changes with melt convection,” Int. J. Numer. Methods Eng., Vol.28, pp.1769-1785, 1989.
    [25] V. R. Voller, A. D. Brent and C. Prakash, “Modelling of heat, mass and solute transport in solidification systems,” Int. J. Heat Mass Transfer, Vol.32 , pp.1719-1731, 1989.
    [26] V. Timchenko, P. Y. P. Chen, E. Leonardi, G. de Vahl Davis and R. Abbaschian, “A computational study of transient plane front solidification of alloys in a Bridgman apparatus under microgravity conditions,” Int. J. Heat Mass Transfer, Vol.43, pp.963-980, 2000.
    [27] C. W. Lan and F. C. Chen, “A finite method for solute segregation in directional solidification and comparison with a finite element method,” Comput. Methods Appl. Mech. Eng., Vol.131, pp.191-207, 1996.
    [28] P. M. Adornato and R. A. Brown, “Convection and segregation in direction solidification of dilute and non-dilute alloys: Effecs of ampoule and furnace design,” J. Cryst. Growth, Vol.80, pp.155-190, 1987.
    [29] S. Brandon and J. J. Derby, “Heat transfer in vertical Bridgman growth of ozides: Effects of conduction, convection and internal radiation,” J. Cryst. Growth, Vol.121, pp.473-494, 1992.
    [30] C. Stelian, J. L. Plaza, F. Barvinschi, T. Duffer, J. L. Santailler, E. Dieguez and I. Nicoara, “Modelling the solute segregation in vertical Bridgman growth by using free-surface technique,” Cryst. Res. Technol., Vol.36, pp. 651-661, 2001.
    [31] C. Stelian, T. Duffer, and I. Nicoara, “Comparison between numerical simulation and experimental measurement of solute segregation during directional solidification,” J. Cryst. Growth, Vol.255, pp.40-51 ,2003.
    [32] C. Barat, “Origines thermiques et convectives des segregations solutales dans des alliages semiconducteurs solidifies directionnellement (in French),” Ph.D. Thesis, University of Rennes, 1995.
    [33] C. J. Chang, and R. A. Brown, “Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth,” J. Cryst. Growth, Vol.63, pp.343-364, 1983.
    [34] M. J. Crochet, F. Dupret, Y. Ryckmans, F. T. Geying and E. M. Monberg, “Numerical simulation of crystal growth in a vertical Bridgman furnace,” J. Cryst. Growth, Vol.97, pp.173-185, 1989.
    [35] J. A. Danzig and L. S. Chao, “Modeling Bridgman crystal growth in microgravity,” TMS Fall Meeting, Indianapolis, Indiana ,USA(1989).
    [36] D. H. Kim, “Dynamic analysis of transport phenomena in directional solidification od binary alloys,” Ph.D Thesis, MIT, 1990.
    [37] H. Weimann, J. Amon, Th. Jung and G. Muller, “Numerical simulation of the growth of 2 inches diameter GaAs crystals by the vertical gradient freeze technique,” J. Cryst. Growth, Vol.180, pp.560-565, 1997.
    [38] O. Patzold, I. Grants, U. Wunderwald, K. Jenker, A. Croll and G. Gerbeth, “Vertical gradient freeze growth of GaAs with a rotating magnetic field,” J. Cryst. Growth, Vol.245, pp.237-246, 2002.
    [39] O. Patzold, U. Wunderwald, M. Bellmann, P. Gumprich, E. Buhrig and A. Croll, “ New developments in vertical gradient freeze growth,” Adv. Eng. Mater., Vol.6. pp.554-557, 2004.
    [40] P. Schwesig, M. Hainke, J. Friedrich and G. Muller, “Comparative numerical study of the effects of rotating and traveling magnetic fields on the interface shape and thermal stress in the VGF growth of InP srystals,” J. Cryst. Growth, Vol.266, pp.224-228, 2004.
    [41] M. Kurz and G. Muller, “Control of thermal conditions during crystal growth by inverse modeling,” J. Cryst. Growth, Vol.208, pp.341-349, 2000.
    [42] G. Muller and B. Birkmann, “Optimization of VGF-growth of GaAs crystals by the aid of numerical modeling,” J. Cryst. Growth, Vol. 237-239, pp.1745-1751, 2002.
    [43] Y. C. Liu and L. S. Chao, “Modified effective specific heat method of solidification problems,” Mater. Trans., Vol.47, pp.2737-2744, 2006.
    [44] Y. C. Liu and L. S. Chao, “Extra nodes added on the solid/liquid interface to solve the mass transfer problem in a directional solidification process,” Mater. Trans. (Accepted, 2007).
    [45] D. H. Kim and R. A. Brown, “Transient simulation of Convection and solute segregation of GaAs growth in gradient freeze furnace,” J. Cryst. Growth, Vol.109, pp.66-74, 1991.
    [46] J. P. Van Doormaal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Numer. Heat Transfer, Vol.7, pp.147-163, 1984.
    [47] D. A. Anderson, J. C. Tannehill and R. H. Pletcher, Computatuional fluid mechanics and heat transfer, (McGraw-Hill, New York, USA 1984)
    [48] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Oxford, England, pp.282-296, 1959.
    [49] W. A. Tiller, K. A. Jackson, J. W. Rutter and B. Chalmers, “The redistribution of solute atoms during the solidification metals,” Acta Metallurgica., Vol.1, pp.428-437, 1953.
    [50] V. G. Smith, W. A. Tiller and J. W. Rutter, “A mathematical analysis of solute redistribution during solidification,” Can. J. Phys., Vol.33, pp.723-745, 1955.
    [51] M. C. Flemings, Solidification processing, McGraw-Hill, New York, USA, pp.31-57, 1974.
    [52] W. Kurz and D. J. Fisher, Fundamentals of solidification, 4th ed., Trans tech publication Ltd, Switzerland, pp.117-132, 1998.

    下載圖示 校內:2008-08-28公開
    校外:2008-08-28公開
    QR CODE