簡易檢索 / 詳目顯示

研究生: 林彥伯
Lin, Yen-Po
論文名稱: 利用硼同位素評估前寒武紀/寒武紀交界帶陡山沱層海水pH值變化與其環境意義
Evaluation of Boron oceanic pH change and its environmental significance recorded in the Doushantuo formation nearby Precambrian-Cambrian boundary
指導教授: 游鎮烽
You, Cheng-Feng
學位類別: 博士
Doctor
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 126
中文關鍵詞: 硼同位素pH雪球地球陡山沱層二氧化碳濃度
外文關鍵詞: Boron isotope, pH, Snowball Earth, Doushantuo Formation, pCO2
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Ediacaran時期曾發生Marinoan 和Gaskiers兩次冰雪覆蓋全球的雪球地球事件,由於溫室氣體濃度上升所引發的超級溫室效應導致冰期結束。本研究主要透過甕安陡山沱層碳酸鹽中硼同位素比值(δ11B),探討新元古代超級溫室效應條件下的海水的pH值與pCO2。本研究改良碳酸鹽相序列萃取方法,排除因混入其他礦物相所導致的硼同位素變化(7‰)。建立橫跨Ediacaran時期,接近一億年中國揚子盆地陡山沱地層完整的碳酸鹽δ11B紀錄(-5.7‰ 到8.9‰)。Marinoan 冰期結束後的地層中,發現全球性δ11B負偏移,本研究認為是融冰時大量陸源沉積物輸入,導致陸棚區域海水B濃度與δ11B顯著改變。通過濃度的變化,可評估陸源貢獻與環境海水δ11B,並將此應用於海水pH值計算。過去Ediacaran時期海水的δ11B被估為定值,各研究的估值差異對pH估算產生顯著影響。本研究不僅排除人為估值差異所導致的pH誤差,更同時考慮陸源通量改變對海水δ11B與pH計算的影響,大幅調整pH值與pCO2的估算方式與結果。研究表明Marinoan結束時海水pH值約 7.76; pCO2 約830 ppm,此結果明顯低於過去的推估值(90,000 ppm)。 此次的δ11B負偏移,是受海水酸化與陸源通量(低δ11B)增加共同影響。超級溫室效應伴隨著冰雪消融與與全球海水面逐漸上升,使沉積環境的陸源通量減少,結束此次負偏移。第二次δ11B負偏移出現在Gaskiers 冰期結束,此時全球各地Ediacaran生物群大量出現,本研究在樣品中發現疑似Ediacaran生物群的生物化石,並估算當時pH值約6.69, pCO2約12,000 ppm。比起過去研究超級溫室效應主要聚焦的Marinoan,Gaskiers時期具有更高的pCO2。 本研究以δ11B、海水pH值、海水面變化與陸源風化通量驗證雪球地球假說,並提供冰雪消融時相對低的pCO2新證據。改變過去對於超級溫室效應的認知。

    We investigated the boron isotope of the carbonate fractions in the Doushantuo Formation to evaluate the seawater pH and partial pressures of atmospheric CO2 under ultra-greenhouse conditions in the Neoproterozoic Era. The δ11B values from the Chuanyandong section were ranged from -5.7 to 8.9‰, with a negative δ11B excursion (11.5‰) during the Marinoan deglacial period. The global and synchronous δ11B offset were intercepted in global ocean acidification events in previous studies. The δ11B and 1/[B] values showed a good correlation, and we suggested the δ11B offset was also significantly influenced by an increase in terrigenous weathering. We modified the traditional method to precisely estimate ocean pH from the δ11B. We excluded the pH error caused by terrigenous weathering and the artificial estimation δ11B of Neoproterozoic oceans. We re-evaluate the pH of seawater and pCO2 in the aftermath of the Marinoan glaciation, which were estimated to be 7.76 and 830 p.p.m.v respectively. These pCO2 values are much lower than those reported in previous studies. In the aftermath of the Gaskiers glaciation with the Weng'an biota, the lowest pH was 6.69, and the pCO2 was 12,000 p.p.m.v. In this study, we provide new evidence and relatively low pCO2 estimates for the Snowball Earth hypothesis.

    摘要 I 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 附錄目錄 XV 第1章 前言 1 1.1雪球地球事件 1 1.1.1雪球地球事件之重要性 1 1.1.2雪球地球假說與超級溫室效應 3 1.2硼同位素及其在古海水pH值代用指標 5 1.2.1硼元素與海洋硼同位素 5 1.2.2海水pH值的代用指標 7 1.2.3海水pH值估算pCO2濃度 9 1.3雪球地球時期δ11B相關研究與挑戰 10 1.3.1雪球地球時期δ11B相關研究 10 1.3.2雪球地球時期δ11B研究的挑戰與限制 12 1.4研究目的 18 第2章 區域地質背景介紹 19 2.1研究區域 19 2.2地層特徵 21 第3章 實驗方法 24 3.1實驗設計與成岩作用、熱水換質作用 24 3.2 實驗流程與方法 26 3.3岩樣觀察儀器 29 3.3.1 奈米X光螢光光譜 (nano-XRF)與X光奈米繞射光束線(X-ray Nano Diffraction) 29 3.3.2 X光螢光光譜 Tender Energy X-ray Absorption Spectroscopy 29 3.3.3拉曼光譜 30 3.4 粉末製備與XRF 30 3.4.1 樣品清洗與粉末製備 30 3.4.2 XRF-粉末元素分析 30 3.5序列萃取與元素同位素分析 32 3.5.1序列萃取方法 32 3.5.2 B純化方法:微昇華 33 3.5.3元素濃度與硼同位素測定 34 第4章 岩相觀察結果 36 4.1穿岩洞岩樣觀察 36 4.2 石盂岩樣觀察 46 4.3 拉曼光譜 48 4.3.1碳物質與磷酸鹽熱事件評估 48 4.3.2溫度計算原理 48 4.3.3穿岩洞拉曼特徵光譜 51 4.3.4穿岩洞熱事件溫度 55 第5章 礦物相分離與序列萃取與地層元素地球化學特徵 58 5.1序列萃取元素濃度結果與萃取方法評估 58 5.2序列萃取δ11B結果與萃取方法評估 63 5.3全岩相分析 64 5.4碳酸鹽相元素濃度 67 5.5殘餘相濃度結果 72 第6章 碳酸鹽相B與δ11B 75 6.1 Ediacaran時期全球δ11B對比 76 6.2碳酸鹽相B與δ11B變化剖面 80 6.3碳酸鹽相δ11B與[B]變化的原因 83 6.4區域海水δ11B變化範圍與控制因素 88 6.5穿岩洞區域海水δ11B估算 91 6.6雪球時期海水pH計算方式調整與影響 94 6.7 δ11B與環境意義 99 第7章 結論 103 參考文獻 104 附錄 114

    Allan, J. R., & Matthews, R. K. (1982). ISOTOPE SIGNATURES ASSOCIATED WITH EARLY METEORIC DIAGENESIS [Article]. Sedimentology, 29(6), 797-817. https://doi.org/10.1111/j.1365-3091.1982.tb00085.x
    Bao, H. M., Lyons, J. R., & Zhou, C. M. (2008). Triple oxygen isotope evidence for elevated CO(2) levels after a Neoproterozoic glaciation [Article]. Nature, 453(7194), 504-506. https://doi.org/10.1038/nature06959
    Baturin, G. N. (1971). FORMATION OF PHOSPHATE SEDIMENTS AND WATER DYNAMICS [Article]. Oceanology-Ussr, 11(3), 372-&. <Go to ISI>://WOS:A1971M230300010
    Bekker, A., Kaufman, A. J., Karhu, J. A., & Eriksson, K. A. (2005). Evidence for Paleoproterozoic cap carbonates in North America [Review]. Precambrian Research, 137(3-4), 167-206. https://doi.org/10.1016/j.precamres.2005.03.009
    Beyssac, O., Goffe, B., Chopin, C., & Rouzaud, J. N. (2002). Raman spectra of carbonaceous material in metasediments: a new geothermometer [Article]. Journal of Metamorphic Geology, 20(9), 859-871. https://doi.org/10.1046/j.1525-1314.2002.00408.x
    Beyssac, O., Goffe, B., Petitet, J. P., Froigneux, E., Moreau, M., & Rouzaud, J. N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy [Article; Proceedings Paper]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 59(10), 2267-2276. https://doi.org/10.1016/s1386-1425(03)00070-2
    Bristow, T. F., Kennedy, M. J., Derkowski, A., Droser, M. L., Jiang, G. Q., & Creaser, R. A. (2009). Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation [Article]. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13190-13195. https://doi.org/10.1073/pnas.0901080106
    Caldeira, K., & Kasting, J. F. (1992). SUSCEPTIBILITY OF THE EARLY EARTH TO IRREVERSIBLE GLACIATION CAUSED BY CARBON-DIOXIDE CLOUDS [Article]. Nature, 359(6392), 226-228. https://doi.org/10.1038/359226a0
    Calver, C. R., Black, L. P., Everard, J. L., & Seymour, D. B. (2004). U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania [Article]. Geology, 32(10), 893-896. https://doi.org/10.1130/g20713.1
    Canfield, D. E., & Raiswell, R. (1999). The evolution of the sulfur cycle [Review]. American Journal of Science, 299(7-9), 697-723. https://doi.org/10.2475/ajs.299.7-9.697
    Chew, D. M., & Spikings, R. A. (2015). Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface [Article]. Elements, 11(3), 189-194. https://doi.org/10.2113/gselements.11.3.189
    Clarkson, M. O., Kasemann, S. A., Wood, R. A., Lenton, T. M., Daines, S. J., Richoz, S., Ohnemueller, F., Meixner, A., Poulton, S. W., & Tipper, E. T. (2015). Ocean acidification and the Permo-Triassic mass extinction [Article]. Science, 348(6231), 229-232. https://doi.org/10.1126/science.aaa0193
    Condon, D., Zhu, M. Y., Bowring, S., Wang, W., Yang, A. H., & Jin, Y. G. (2005). U-Pb ages from the neoproterozoic Doushantuo Formation, China [Article]. Science, 308(5718), 95-98. https://doi.org/10.1126/science.1107765
    Coplen, T. B., Bohlke, J. K., De Bievre, P., Ding, T., Holden, N. E., Hopple, J. A., Krouse, H. R., Lamberty, A., Peiser, H. S., Revesz, K., Rieder, S. E., Rosman, K. J. R., Roth, E., Taylor, P. D. P., Vocke, R. D., & Xiao, Y. K. (2002). Isotope-abundance variations of selected elements - (IUPAC Technical Report) [Review]. Pure and Applied Chemistry, 74(10), 1987-2017. https://doi.org/10.1351/pac200274101987
    Coplen, T. B., & Shrestha, Y. (2016). Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report) [Article]. Pure and Applied Chemistry, 88(12), 1203-1224. https://doi.org/10.1515/pac-2016-0302
    Creveling, J. R., & Mitrovica, J. X. (2014). The sea-level fingerprint of a Snowball Earth deglaciation [Article]. Earth and Planetary Science Letters, 399, 74-85. https://doi.org/10.1016/j.epsl.2014.04.029
    Cunningham, J. A., Thomas, C. W., Bengtson, S., Kearns, S. L., Xiao, S. H., Marone, F., Stampanoni, M., & Donoghue, P. C. J. (2012). Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians [Article]. Proceedings of the Royal Society B-Biological Sciences, 279(1737), 2369-2376. https://doi.org/10.1098/rspb.2011.2280
    Derkowski, A., Bristow, T. F., Wampler, J. M., Srodon, J., Marynowski, L., Elliott, W. C., & Chamberlain, C. P. (2013). Hydrothermal alteration of the Ediacaran Doushantuo Formation in the Yangtze Gorges area (South China) [Article]. Geochimica Et Cosmochimica Acta, 107, 279-298. https://doi.org/10.1016/j.gca.2013.01.015
    Derry, L. A., Kaufman, A. J., & Jacobsen, S. B. (1992). SEDIMENTARY CYCLING AND ENVIRONMENTAL-CHANGE IN THE LATE PROTEROZOIC - EVIDENCE FROM STABLE AND RADIOGENIC ISOTOPES [Review]. Geochimica Et Cosmochimica Acta, 56(3), 1317-1329. https://doi.org/10.1016/0016-7037(92)90064-p
    Dickson, A. G. (1990). THERMODYNAMICS OF THE DISSOCIATION OF BORIC-ACID IN SYNTHETIC SEAWATER FROM 273.15-K TO 318.15-K [Article]. Deep-Sea Research Part a-Oceanographic Research Papers, 37(5), 755-766. https://doi.org/10.1016/0198-0149(90)90004-f
    Dornbos, S. Q., Bottjer, D. J., Chen, J. Y., Gao, F., Oliveri, P., & Li, C. W. (2006). Environmental controls on the taphonomy of phosphatized animals and animal embryos from the neoproterozoic doushantuo formation, Southwest China [Article]. Palaios, 21(1), 3-14. https://doi.org/10.2110/palo.2004.p04-37
    Edgar, K. M., Anagnostou, E., Pearson, P. N., & Foster, G. L. (2015). Assessing the impact of diagenesis on delta B-11, delta C-13, delta O-18, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite [Article]. Geochimica Et Cosmochimica Acta, 166, 189-209. https://doi.org/10.1016/j.gca.2015.06.018
    Erwin, D. H. (2009). Climate as a Driver of Evolutionary Change. Current Biology, 19(14), R575-R583. https://doi.org/10.1016/j.cub.2009.05.047
    Farmer, J. R., Branson, O., Uchikawa, J., Penman, D. E., Honisch, B., & Zeebe, R. E. (2019). Boric acid and borate incorporation in inorganic calcite inferred from B/Ca, boron isotopes and surface kinetic modeling [Article]. Geochimica Et Cosmochimica Acta, 244, 229-247. https://doi.org/10.1016/j.gca.2018.10.008
    Farmer, J. R., Honisch, B., & Uchikawa, J. (2016). Single laboratory comparison of MC-ICP-MS and N-TIMS boron isotope analyses in marine carbonates [Article]. Chemical Geology, 447, 173-182. https://doi.org/10.1016/j.chemgeo.2016.11.008
    Farsang, S., Facq, S., & Redfern, S. A. T. (2018). Raman modes of carbonate minerals as pressure and temperature gauges up to 6 GPa and 500 degrees C [Article]. American Mineralogist, 103(12), 1988-1998. https://doi.org/10.2138/am-2018-6442
    Foster, G. L., Pogge von Strandmann, P. A. E., & Rae, J. W. B. (2010). Boron and magnesium isotopic composition of seawater [Article]. Geochemistry Geophysics Geosystems, 11, 10, Article Q08015. https://doi.org/10.1029/2010gc003201
    Foster, G. L., & Rae, J. W. B. (2016). Reconstructing Ocean pH with Boron Isotopes in Foraminifera. In R. Jeanloz & K. H. Freeman (Eds.), Annual Review of Earth and Planetary Sciences, Vol 44 (Vol. 44, pp. 207-237). Annual Reviews. https://doi.org/10.1146/annurev-earth-060115-012226
    Foucher, F., Ammar, M. R., & Westall, F. (2015). Revealing the biotic origin of silicified Precambrian carbonaceous microstructures using Raman spectroscopic mapping, a potential method for the detection of microfossils on Mars [Article; Proceedings Paper]. Journal of Raman Spectroscopy, 46(10), 873-879. https://doi.org/10.1002/jrs.4687
    Gaillardet, J., & Lemarchand, D. (2018). Boron in the Weathering Environment. Springer International Publishing Ag. https://doi.org/10.1007/978-3-319-64666-4_7
    Gaillardet, J., Lemarchand, D., Gopel, C., & Manhes, G. (2001). Evaporation and sublimation of boric acid: Application for boron purification from organic rich solutions. Geostandards Newsletter-the Journal of Geostandards and Geoanalysis, 25(1), 67-75. https://doi.org/10.1111/j.1751-908X.2001.tb00788.x
    Greenop, R., Hain, M. P., Sosdian, S. M., Oliver, K. I. C., Goodwin, P., Chalk, T. B., Lear, C. H., Wilson, P. A., & Foster, G. L. (2017). A record of Neogene seawater delta B-11 reconstructed from paired delta B-11 analyses on benthic and planktic foraminifera [Article]. Climate of the Past, 13(2), 149-170. https://doi.org/10.5194/cp-13-149-2017
    Henehan, M. J., Foster, G. L., Bostock, H. C., Greenop, R., Marshall, B. J., & Wilson, P. A. (2016). A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for 'vital effects' [Article]. Earth and Planetary Science Letters, 454, 282-292. https://doi.org/10.1016/j.epsl.2016.09.024
    Hoffman, P. F. (2011). Strange bedfellows: glacial diamictite and cap carbonate from the Marinoan (635 Ma) glaciation in Namibia [Review]. Sedimentology, 58(1), 57-119. https://doi.org/10.1111/j.1365-3091.2010.01206.x
    Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A Neoproterozoic snowball earth [Article]. Science, 281(5381), 1342-1346. https://doi.org/10.1126/science.281.5381.1342
    Hoffman, P. F., & Schrag, D. P. (2002). The snowball Earth hypothesis: testing the limits of global change [Review]. Terra Nova, 14(3), 129-155. https://doi.org/10.1046/j.1365-3121.2002.00408.x
    Honisch, B., & Hemming, N. G. (2004). Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects. Paleoceanography, 19(4), Article Pa4010. https://doi.org/10.1029/2004pa001026
    Honisch, B., Hemming, N. G., Grottoli, A. G., Amat, A., Hanson, G. N., & Buma, J. (2004). Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects [Article]. Geochimica Et Cosmochimica Acta, 68(18), 3675-3685. https://doi.org/10.1016/j.gca.2004.03.002
    Huang, J., Chu, X. L., Chang, H. J., & Feng, L. J. (2009). Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges [Article]. Chinese Science Bulletin, 54(18), 3295-3302. https://doi.org/10.1007/s11434-009-0305-1
    Hubert, B., Alvaro, J. J., & Chen, J. Y. (2005). Microbially mediated phosphatization in the Neoproterozoic Doushantuo Lagerstatte, South China [Article]. Bulletin De La Societe Geologique De France, 176(4), 355-361. https://doi.org/10.2113/176.4.355
    Hurtgen, M. T., Arthur, M. A., Suits, N. S., & Kaufman, A. J. (2002). The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? [Article]. Earth and Planetary Science Letters, 203(1), 413-429, Article Pii s0012-821x(02)00804-x. https://doi.org/10.1016/s0012-821x(02)00804-x
    Hyde, W. T., Crowley, T. J., Baum, S. K., & Peltier, W. R. (2000). Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model. Nature, 405(6785), 425-429. https://doi.org/10.1038/35013005
    Jacobsen, S. B., & Kaufman, A. J. (1999). The Sr, C and O isotopic evolution of Neoproterozoic seawater [Article]. Chemical Geology, 161(1-3), 37-57. https://doi.org/10.1016/s0009-2541(99)00080-7
    Jiang, G. Q., Kaufman, A. J., Christie-Blick, N., Zhang, S. H., & Wu, H. C. (2007). Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean delta C-13 gradient. Earth and Planetary Science Letters, 261(1-2), 303-320. https://doi.org/10.1016/j.epsl.2007.07.009
    Jiang, G. Q., Shi, X. Y., Zhang, S. H., Wang, Y., & Xiao, S. H. (2011). Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China. Gondwana Research, 19(4), 831-849. https://doi.org/10.1016/j.gr.2011.01.006
    Jiang, G. Q., Wang, X. Q., Shi, X. Y., Xiao, S. H., Zhang, S. H., & Dong, J. (2012). The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform [Article]. Earth and Planetary Science Letters, 317, 96-110. https://doi.org/10.1016/j.epsl.2011.11.018
    Joachimski, M. M., Simon, L., van Geldern, R., & Lecuyer, C. (2005). Boron isotope geochemistry of Paleozoic brachiopod calcite: Implications for a secular change in the boron isotope geochemistry of seawater over the Phanerozoic [Article]. Geochimica Et Cosmochimica Acta, 69(16), 4035-4044. https://doi.org/10.1016/j.gca.2004.11.017
    Kasemann, S. A., Hawkesworth, C. J., Prave, A. R., Fallick, A. E., & Pearson, P. N. (2005). Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth and Planetary Science Letters, 231(1-2), 73-86. https://doi.org/10.1016/j.epsl.2004.12.006
    Kasemann, S. A., Prave, A. R., Fallick, A. E., Hawkesworth, C. J., & Hoffmann, K. H. (2010). Neoproterozoic ice ages, boron isotopes, and ocean acidification: Implications for a snowball Earth [Article]. Geology, 38(9), 775-778. https://doi.org/10.1130/g30851.1
    Kaufman, A. J., & Knoll, A. H. (1995). NEOPROTEROZOIC VARIATIONS IN THE C-ISOTOPIC COMPOSITION OF SEAWATER - STRATIGRAPHIC AND BIOGEOCHEMICAL IMPLICATIONS [Review]. Precambrian Research, 73(1-4), 27-49. https://doi.org/10.1016/0301-9268(94)00070-8
    Kaufman, A. J., Knoll, A. H., & Narbonne, G. M. (1997). Isotopes, ice ages, and terminal Proterozoic earth history [Article]. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 6600-6605. https://doi.org/10.1073/pnas.94.13.6600
    Klochko, K., Kaufman, A. J., Yao, W. S., Byrne, R. H., & Tossell, J. A. (2006). Experimental measurement of boron isotope fractionation in seawater. Earth and Planetary Science Letters, 248(1-2), 276-285. https://doi.org/10.1016/j.epsl.2006.05.034
    Kouketsu, Y., Mizukami, T., Mori, H., Endo, S., Aoya, M., Hara, H., Nakamura, D., & Wallis, S. (2014). A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width [Article]. Island Arc, 23(1), 33-50. https://doi.org/10.1111/iar.12057
    Lemarchand, D., Gaillardet, J., Gopel, C., & Manhes, G. (2002). An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chemical Geology, 182(2-4), 323-334, Article Pii s0009-2541(01)00329-1. https://doi.org/10.1016/s0009-2541(01)00329-1
    Lemarchand, D., Gaillardet, J., Lewin, E., & Allegre, C. J. (2000). The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH [Article]. Nature, 408(6815), 951-954. https://doi.org/10.1038/35050058
    Lemarchand, D., Gaillardet, J., Lewin, E., & Allegre, C. J. (2002). Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic [Article]. Chemical Geology, 190(1-4), 123-140, Article Pii s0009-2541(02)00114-6. https://doi.org/10.1016/s0009-2541(02)00114-6
    Lemarchand, E., Schott, J., & Gaillardet, J. (2007). How surface complexes impact boron isotope fractionation: Evidence from Fe and Mn oxides sorption experiments [Article]. Earth and Planetary Science Letters, 260(1-2), 277-296. https://doi.org/10.1016/j.epsl.2007.05.039
    Li, C., Love, G. D., Lyons, T. W., Fike, D. A., Sessions, A. L., & Chu, X. L. (2010). A Stratified Redox Model for the Ediacaran Ocean [Article]. Science, 328(5974), 80-83. https://doi.org/10.1126/science.1182369
    Li, M. H. (2020). Evaluation of paired carbon isotopic signals from the Ediacaran Doushantuo phosphorites: Diagenetic or primary? [Article]. Precambrian Research, 349, 9, Article 105502. https://doi.org/10.1016/j.precamres.2019.105502
    Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S., Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J., & Summons, R. E. (2009). Fossil steroids record the appearance of Demospongiae during the Cryogenian period [Article]. Nature, 457(7230), 718-U715. https://doi.org/10.1038/nature07673
    Lv, Y. W., Liu, S. A., Wu, H. C., Hohl, S. V., Chen, S. M., & Li, S. G. (2018). Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications [Article]. Geochimica Et Cosmochimica Acta, 239, 330-345. https://doi.org/10.1016/j.gca.2018.08.003
    Macdonald, F. A., Strauss, J. V., Sperling, E. A., Halverson, G. P., Narbonne, G. M., Johnston, D. T., Kunzmann, M., Schrag, D. P., & Higgins, J. A. (2013). The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada [Article]. Chemical Geology, 362, 250-272. https://doi.org/10.1016/j.chemgeo.2013.05.032
    Mamedov, S. (2020). Characterization of TiO2 Nanopowders by Raman Spectroscopy [Article]. Spectroscopy, 35, 41-49. <Go to ISI>://WOS:000797937500003
    Martinez-Boti, M. A., Marino, G., Foster, G. L., Ziveri, P., Henehan, M. J., Rae, J. W. B., Mortyn, P. G., & Vance, D. (2015). Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation [Article]. Nature, 518(7538), 219-U154. https://doi.org/10.1038/nature14155
    McCulloch, M., Falter, J., Trotter, J., & Montagna, P. (2012). Coral resilience to ocean acidification and global warming through pH up-regulation [Article]. Nature Climate Change, 2(8), 623-633. https://doi.org/10.1038/nclimate1473
    McFadden, K. A., Huang, J., Chu, X. L., Jiang, G. Q., Kaufman, A. J., Zhou, C. M., Yuan, X. L., & Xiao, S. H. (2008). Pulsed oxidation and bioloical evolution in the Ediacaran Doushantuo Formation [Article]. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3197-3202. https://doi.org/10.1073/pnas.0708336105
    Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., & Pierrot, D. (2006). Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry, 100(1), 80-94. https://doi.org/https://doi.org/10.1016/j.marchem.2005.12.001
    Mort, H. P., Adatte, T., Follmi, K. B., Keller, G., Steinmann, P., Matera, V., Berner, Z., & Stuben, D. (2007). Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2 [Article]. Geology, 35(6), 483-486. https://doi.org/10.1130/g23475a.1
    Muscente, A. D., Hawkins, A. D., & Xiao, S. H. (2015). Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation (South China): a comparative synthesis [Article]. Palaeogeography Palaeoclimatology Palaeoecology, 434, 46-62. https://doi.org/10.1016/j.palaeo.2014.10.013
    Narbonne, G. M. (2005). The ediacarabiota: Neoproterozoic origin of animals and their ecosystems [Review; Book Chapter]. Annual Review of Earth and Planetary Sciences, 33, 421-442. https://doi.org/10.1146/annurev.earth.33.092203.122519
    Narbonne, G. M., & Hofmann, H. J. (1987). EDIACARAN BIOTA OF THE WERNECKE MOUNTAINS, YUKON, CANADA [Article]. Palaeontology, 30, 647-676. <Go to ISI>://WOS:A1987L333400001
    Noireaux, J., Mavromatis, V., Gaillardet, J., Schott, J., Montouillout, V., Louvat, P., Rollion-Bard, C., & Neuville, D. R. (2015). Crystallographic control on the boron isotope paleo-pH proxy [Article]. Earth and Planetary Science Letters, 430, 398-407. https://doi.org/10.1016/j.epsl.2015.07.063
    Och, L. M., & Shields-Zhou, G. A. (2012). The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling [Review]. Earth-Science Reviews, 110(1-4), 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
    Ohnemueller, F., Prave, A. R., Fallick, A. E., & Kasemann, S. A. (2014). Ocean acidification in the aftermath of the Marinoan glaciation [Article]. Geology, 42(12), 1103-1106. https://doi.org/10.1130/g35937.1
    Palmer, M. R., & Edmond, J. M. (1989). THE STRONTIUM ISOTOPE BUDGET OF THE MODERN OCEAN [Article]. Earth and Planetary Science Letters, 92(1), 11-26. https://doi.org/10.1016/0012-821x(89)90017-4
    Palmer, M. R., London, D., Morgan, G. B., & Babb, H. A. (1992). EXPERIMENTAL-DETERMINATION OF FRACTIONATION OF B-11/B-10 BETWEEN TOURMALINE AND AQUEOUS VAPOR - A TEMPERATURE-DEPENDENT AND PRESSURE-DEPENDENT ISOTOPIC SYSTEM [Article; Proceedings Paper]. Chemical Geology, 101(1-2), 123-129. https://doi.org/10.1016/0009-2541(92)90209-n
    Pasteris, J. D., & Wopenka, B. (1991). RAMAN-SPECTRA OF GRAPHITE AS INDICATORS OF DEGREE OF METAMORPHISM [Article]. Canadian Mineralogist, 29, 1-9. <Go to ISI>://WOS:A1991FJ73600001
    Pearson, P. N., & Palmer, M. R. (2000). Estimating Paleogene atmospheric pCO(2) using boron isotope analysis of foraminifera. Gff, 122, 127-128. https://doi.org/10.1080/11035890001221127
    Pierrehumbert, R. T. (2002). The hydrologic cycle in deep-time climate problems [Review]. Nature, 419(6903), 191-198. https://doi.org/10.1038/nature01088
    Planavsky, N. J., Rouxel, O. J., Bekker, A., Lalonde, S. V., Konhauser, K. O., Reinhard, C. T., & Lyons, T. W. (2010). The evolution of the marine phosphate reservoir [Article]. Nature, 467(7319), 1088-1090. https://doi.org/10.1038/nature09485
    Prave, A. R., Condon, D. J., Hoffmann, K. H., Tapster, S., & Fallick, A. E. (2016). Duration and nature of the end-Cryogenian (Marinoan) glaciation [Article]. Geology, 44(8), 631-634. https://doi.org/10.1130/g38089.1
    Pu, J. P., Bowring, S. A., Ramezani, J., Myrow, P., Raub, T. D., Landing, E., Mills, A., Hodgin, E., & Macdonald, F. A. (2016). Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota [Article]. Geology, 44(11), 955-958. https://doi.org/10.1130/g38284.1
    Qu, Y. G., Engdahl, A., Zhu, S. X., Vajda, V., & McLoughlin, N. (2015). Ultrastructural Heterogeneity of Carbonaceous Material in Ancient Cherts: Investigating Biosignature Origin and Preservation [Article]. Astrobiology, 15(10), 825-842. https://doi.org/10.1089/ast.2015.1298
    Rooney, A. D., Strauss, J. V., Brandon, A. D., & Macdonald, F. A. (2015). A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations [Article]. Geology, 43(5), 459-462. https://doi.org/10.1130/g36511.1
    Rose, E. F., Chaussidon, M., & France-Lanord, C. (2000). Fractionation of Boron isotopes during erosion processes: The example of Himalayan rivers [Article]. Geochimica Et Cosmochimica Acta, 64(3), 397-408. https://doi.org/10.1016/s0016-7037(99)00117-9
    Sahoo, S. K., Planavsky, N. J., Kendall, B., Wang, X. Q., Shi, X. Y., Scott, C., Anbar, A. D., Lyons, T. W., & Jiang, G. Q. (2012). Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489(7417), 546-549. https://doi.org/10.1038/nature11445
    Sansjofre, P., Ader, M., Trindade, R. I. F., Elie, M., Lyons, J., Cartigny, P., & Nogueira, A. C. R. (2011). A carbon isotope challenge to the snowball Earth [Article]. Nature, 478(7367), 93-U103. https://doi.org/10.1038/nature10499
    Sanyal, A., Bijma, J., Spero, H., & Lea, D. W. (2001). Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. Paleoceanography, 16(5), 515-519. https://doi.org/10.1029/2000pa000547
    Sanyal, A., Hemming, N. G., Broecker, W. S., Lea, D. W., Spero, H. J., & Hanson, G. N. (1996). Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography, 11(5), 513-517. https://doi.org/10.1029/96pa01858
    Sawaki, Y., Ohno, T., Tahata, M., Komiya, T., Hirata, T., Maruyama, S., Windley, B. F., Han, J., Shu, D. G., & Li, Y. (2010). The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China [Review]. Precambrian Research, 176(1-4), 46-64. https://doi.org/10.1016/j.precamres.2009.10.006
    Smith, H. J., Spivack, A. J., Staudigel, H., & Hart, S. R. (1995). The boron isotopic composition of altered oceanic crust [Article; Proceedings Paper]. Chemical Geology, 126(2), 119-135. https://doi.org/10.1016/0009-2541(95)00113-6
    Spivack, A. J., You, C. F., & Smith, H. J. (1993). FORAMINIFERAL BORON ISOTOPE RATIOS AS A PROXY FOR SURFACE OCEAN PH OVER THE PAST 21-MYR [Article]. Nature, 363(6425), 149-151. https://doi.org/10.1038/363149a0
    Stewart, J. A., Gutjahr, M., Pearce, F., Swart, P. K., & Foster, G. L. (2015). Boron during meteoric diagenesis and its potential implications for Marinoan snowball Earth delta B-11-pH excursions [Article]. Geology, 43(7), 627-630. https://doi.org/10.1130/g36652.1
    Tahata, M., Ueno, Y., Ishikawa, T., Sawaki, Y., Murakami, K., Han, J., Shu, D. G., Li, Y., Guo, J. F., Yoshida, N., & Komiya, T. (2013). Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: Decoding temperature and environmental changes through the Ediacaran [Article]. Gondwana Research, 23(1), 333-353. https://doi.org/10.1016/j.gr.2012.04.005
    Vengosh, A., Kolodny, Y., Starinsky, A., Chivas, A. R., & McCulloch, M. T. (1991). COPRECIPITATION AND ISOTOPIC FRACTIONATION OF BORON IN MODERN BIOGENIC CARBONATES [Article]. Geochimica Et Cosmochimica Acta, 55(10), 2901-2910. https://doi.org/10.1016/0016-7037(91)90455-e
    Wang, B. S., You, C. F., Huang, K. F., Wu, S. F., Aggarwal, S. K., Chung, C. H., & Lin, P. Y. (2010). Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta, 82(4), 1378-1384. https://doi.org/10.1016/j.talanta.2010.07.010
    Wang, W., Zhou, C. M., Guan, C. G., Yuan, X. L., Chen, Z., & Wan, B. (2014). An integrated carbon, oxygen, and strontium isotopic studies of the Lantian Formation in South China with implications for the Shuram anomaly [Article]. Chemical Geology, 373, 10-26. https://doi.org/10.1016/j.chemgeo.2014.02.023
    Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3), 203-215. https://doi.org/https://doi.org/10.1016/0304-4203(74)90015-2
    Xiao, S. H., & Knoll, A. H. (2000). Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'An, Guizhou, South China [Review]. Journal of Paleontology, 74(5), 767-788. https://doi.org/10.1666/0022-3360(2000)074<0767:Paeftn>2.0.Co;2
    Xiao, S. H., McFadden, K. A., Peek, S., Kaufman, A. J., Zhou, C. M., Jiang, G. Q., & Hu, J. (2012). Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models [Article]. Precambrian Research, 192-95, 125-141. https://doi.org/10.1016/j.precamres.2011.10.021
    Xiao, S. H., Muscente, A. D., Chen, L., Zhou, C. M., Schiffbauer, J. D., Wood, A. D., Polys, N. F., & Yuan, X. L. (2014). The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes [Review]. National Science Review, 1(4), 498-520. https://doi.org/10.1093/nsr/nwu061
    Xiao, S. H., Zhang, Y., & Knoll, A. H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite [Article]. Nature, 391(6667), 553-558. https://doi.org/10.1038/35318
    You, C. F., Chan, L. H., Spivack, A. J., & Gieskes, J. M. (1995). LITHIUM, BORON, AND THEIR ISOTOPES IN SEDIMENTS AND PORE WATERS OF OCEAN DRILLING PROGRAM SITE-808, NANKAI TROUGH - IMPLICATIONS FOR FLUID EXPULSION IN ACCRETIONARY PRISMS [Article]. Geology, 23(1), 37-40. https://doi.org/10.1130/0091-7613(1995)023<0037:Lbatii>2.3.Co;2
    Yu, W. C., Algeo, T. J., Zhou, Q., Du, Y. S., & Wang, P. (2020). Cryogenian cap carbonate models: a review and critical assessment [Review]. Palaeogeography Palaeoclimatology Palaeoecology, 552, 26, Article 109727. https://doi.org/10.1016/j.palaeo.2020.109727
    Yu, W. C., Algeo, T. J., Zhou, Q., Wei, W., Yang, M. Y., Li, F., Du, Y. S., Pan, W., & Wang, P. (2022). Evaluation of alkalinity sources to Cryogenian cap carbonates, and implications for cap carbonate formation models [Article]. Global and Planetary Change, 217, 20, Article 103949. https://doi.org/10.1016/j.gloplacha.2022.103949
    Zhu, M. Y., Lu, M., Zhang, J. M., Zhao, F. C., Li, G. X., Aihua, Y., Zhao, X., & Zhao, M. J. (2013). Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China [Article]. Precambrian Research, 225, 7-28. https://doi.org/10.1016/j.precamres.2011.07.019

    無法下載圖示 校內:2028-08-17公開
    校外:2028-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE