簡易檢索 / 詳目顯示

研究生: 黃偉誌
Huang, Wei-Chih
論文名稱: 鋅錫鈦高溫無鉛銲錫氧化及界面潤濕反應行為之研究
The oxidation and wetting behavior of Zn-25Sn-xTi high temperature Pb-free solder alloys
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 116
中文關鍵詞: 高溫無鉛銲錫鈦元素添加潤濕性抗氧化性介金屬化合物
外文關鍵詞: Lead-free solder, Ti addition, wettability, oxidation resistance, Intermetallic Compound
相關次數: 點閱:179下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討鈦元素的添加對於Zn-25Sn銲錫合金微觀結構、熱性質、抗氧化性以及與銅基材間潤濕性質及界面反應之影響。
    微觀結構觀察顯示,鈦的添加(>0.05 wt%)在合金緩慢冷卻過程中會於晶界處形成Ti3Sn2Zn6三元化合物;熱差分析結果顯示,鈦的添加會降低Zn-25Sn合金過冷度; 熱重分析及氧化後合金表面元素分析結果顯示,鈦元素的添加在高溫氧化過程中會於合金表面生成緻密鈦氧化層,抑制合金進一步氧化,並降低其氧化速率而提升合金抗氧化能力;由潤濕天平實驗中發現具有界面化學反應之潤濕行為皆起始於潤濕反應孕育期,後續潤濕反應受潤濕反應孕育期影響;潤濕性質量測結果顯示Zn-25Sn-0.02Ti於本實驗中與銅基材間具有最佳潤濕性質;界面反應微觀結構觀察結果顯示,Zn-25Sn-xTi與銅基材間會生成Cu5Zn8及CuZn5兩種不同介金屬化合物,且鈦原子傾向聚集於銲錫與CuZn5界面,當鈦含量為0.02 wt%時,界面介金屬化合物總厚度出現極大值,隨著鈦含量增加,CuZn5厚度明顯降低而造成介金屬化合物總厚度降低;時效熱處理實驗結果顯示,添加鈦元素會降低介金屬化合物成長速率,長時間時效後界面只生成單一種介金屬化合物Cu5Zn8。

    The microstructure, thermal properties, oxidation resistance and interfacial wetting behaviors of Zn-25Sn-xTi(x = 0,0.02,0.05,0.1 and 0.15) were investigated in this study. Microstructure observation of the solder alloys shows that Ti3Sn2Zn6 was formed at the grain boundary as Ti addition exceeded 0.05 wt%. The results of DSC (Differential Scanning Calorimetry) show that Ti addition reduces the undercooling of the Zn-25Sn solder. The oxidation tests indicate that the addition of Ti lowers the oxidation rate and improves the oxidation resistance by forming a dense Ti-oxide layer at the surface of the alloy during oxidation reaction. The result of wetting balance tests show that the reactive wetting of soldering exhibits an incubation period in the early stage of wetting and all the wetting reaction initiates in the incubation period. Zn-25Sn-0.02Ti shows the best wettability with Cu. Interfacial microstructure shows that CuZn5 and Cu5Zn8 were formed and Ti tended to accumulate at the Cu/solder interface then reduce the thickness of CuZn5 as Ti content exceeds 0.02 wt%. The addition of Ti supresses the growth rate of IMC during thermal aging tests. After aging, only Cu5Zn8 was observed at the interface.

    總目錄 中文摘要………………………………………………………………………………………I Extended Abstract……………………………………………………………II 致謝………………………………………………………………………………………………XII 總目錄…………………………………………………………………………………………XIII 表目錄…………………………………………………………………………………………XVI 圖目錄…………………………………………………………………………………………XVII 第壹章 簡介………………………………………………………………………………1 1-1銲錫與電子構裝技術………………………………………………………1 1-2高溫銲錫系統……………………………………………………………………4 1-2-1金錫(Au-Sn)系合金………………………………………………8 1-2-2鉍銀(Bi-Ag)系合金………………………………………………8 1-2-3鋅鋁(Zn-Al)系合金………………………………………………8 1-2-4鋅錫(Zn-Sn)系合金………………………………………………9 1-3潤濕行為……………………………………………………………………………12 1-3-1潤濕性質量測……………………………………………………………16 1-3-2潤濕天平工作原理…………………………………………………16 1-3-3影響潤濕性質的因素……………………………………………20 1-4研究動機…………………………………………………………………………22 第貳章 實驗方法及步驟…………………………………………………23 2-1 實驗構想……………………………………………………………………23 2-2 鋅錫-x鈦高溫無鉛銲錫之配製…………………………23 2-3 鋅錫-x鈦高溫無鉛銲錫之顯微結構觀察及分析…25 2-4 鋅錫-x鈦高溫無鉛銲錫之熱性質分析……………………25 2-5 鋅錫-x鈦高溫無鉛銲錫之抗氧化性質分析…………27 2-5-1 熱重分析………………………………………………………………………27 2-5-2 銲錫合金表面氧化層分析……………………………………27 2-6 鋅錫-x鈦高溫無鉛銲錫與銅基材之潤濕行為分析……27 2-6-1 基材前處理…………………………………………………………………………28 2-6-2 潤濕天平試驗……………………………………………………………………28 2-6-3 界面組織顯微結構觀察及成分分析…………………………30 2-7 鋅錫-x鈦高溫無鉛銲錫與銅基材界面時效熱處理實驗……30 第參章 結果與討論……………………………………………………………………………………31 3-1 Zn-25Sn-xTi 材料微觀結構及熱性質分析…………………………31 3-1-1 顯微結構觀察及分析…………………………………………………………………31 3-1-2 熱差分析…………………………………………………………………………………………39 3-2 Zn-25Sn-xTi 高溫氧化行為……………………………………………………44 3-2-1 銲錫合金高溫氧化行為分析…………………………………………………45 3-2-2 氧化速率計算………………………………………………………………………………47 3-2-3 表面氧化層成分分析………………………………………………………………49 3-3 Zn-25Sn-xTi 與銅基材間潤濕行為……………………………………54 3-3-1 Zn-25Sn 與銅基材間初期潤濕行為…………………………………54 3-3-2 Zn-25Sn-xTi 與銅基材間初期潤濕行為………………………58 3-3-3 Zn-25Sn-xTi 與銅基材間中後期潤濕行為…………………68 3-3-4 Zn-25Sn-xTi 與銅基材界面反應微觀結構分析…………77 3-4 Zn-25Sn-xTi 與銅基材界面時效熱處理……………………………88 第肆章 結論………………………………………………………94 參考資料………………………………………………………………95 附錄1 Pb-Sn二元相圖…………………………………………………107 附錄2 Au-Sn二元相圖…………………………………………………108 附錄3 Ag-Bi二元相圖…………………………………………………109 附錄4 Al-Zn二元相圖…………………………………………………110 附錄5 Zn-Sn二元相圖…………………………………………………111 附錄6 Zn-Sn-Ti三元相圖(600℃)………………………112 附錄7 Zn-Ti二元相圖…………………………………………………113 附錄8 Sn-Ti二元相圖…………………………………………………114 附錄9 Cu-Ti二元相圖…………………………………………………115 附錄10 Cu-Zn二元相圖………………………………………………116 表目錄 表1-1 已報導的高溫銲錫對應其應用範圍及其基本需求………………………6 表1-2 常用高溫無鉛銲錫其固相線及液相線溫度……………………………………7 表3-1 Zn-25Sn-xTi 銲錫合金熱差分析結果…………………………………………43 表3-2 Zn-25Sn-xTi 銲錫合金氧化速率…………………………………………………50 表3-3 介金屬化合物成長速率…………………………………………………………………………91 圖目錄 圖1-1電子構裝層級介紹……………………………………………………………………………………………………………2 圖1-2晶片接合技術(a)打線接合(b)捲帶式自動接合(c)覆晶接合………………………3 圖1-3 高溫無鉛銲錫機械性質………………………………………………………………………………………………10 圖1-4 不同熔融溫度下之銲錫合金中固相比例………………………………………………………………11 圖1-5 室溫下之Zn-xSn銲錫合金機械性質………………………………………………………………………13 圖1-6 Zn-xSn銲錫合金之導熱係數……………………………………………………………………………………14 圖1-7銲錫合金與基材力學平衡示意圖………………………………………………………………………………15 圖1-8基材於液態銲錫中力學平衡示意圖…………………………………………………………………………18 圖1-9潤濕天平實驗銅線材浸入熔融銲錫合金過程及其所對應之潤濕曲線圖……19 圖2-1實驗流程圖…………………………………………………………………………………………………………………………24 圖2-2石英封管流程圖………………………………………………………………………………………………………………26 圖2-3銅基材前處理步驟流程圖……………………………………………………………………………………………29 圖3-1 Zn-25Sn銲錫合金以爐冷方式冷卻之微觀結構………………………………………………32 圖3-2 (a) Zn-25Sn-0.02Ti (b) Zn-25Sn-0.05Ti (c) Zn-25Sn-0.1Ti (d) Zn-25Sn-0.15Ti 銲錫合金以爐冷方式冷卻之微觀結構………………………………………………………………………………………………33 圖3-3 (a) Zn-25Sn-0.05Ti (b) Zn-25Sn-0.1Ti (c) Zn-25Sn-0.15Ti 銲錫合金微觀結構中鋅錫鈦三元化合物影像………………………………………………………………………………………………………………………………………34 圖3-4 Zn-25Sn-0.15Ti銲錫合金中鋅錫鈦三元化合物以能量散佈光譜儀(EDS)成分分析結果…………35 圖3-5 Zn-25Sn銲錫合金以水淬方式冷卻之微觀結構……………………………………………………………37 圖3-6 (a) Zn-25Sn-0.02Ti (b) Zn-25Sn-0.05Ti (c) Zn-25Sn-0.1Ti (d) Zn-25Sn-0.15Ti 銲錫合金以水淬方式冷卻之微觀結構………………………………………………………………………………………………38 圖3-7 Zn-25Sn銲錫合金之熱差分析曲線圖……………………………………………………………………………40 圖3-8 Zn-25Sn-0.05Ti銲錫合金之熱差分析曲線圖…………………………………………………………41 圖3-8(續) Zn-25Sn-0.15Ti銲錫合金之熱差分析曲線圖………………………………………………42 圖3-9 Zn-25Sn-xTi銲錫合金於435℃時在空氣環境下熱重分析曲線圖……………………46 圖3-10 熱重分析曲線40-100分鐘內單位面積重量增加量對時間平方根作圖……………48 圖3-11 Zn-25Sn-xTi銲錫合金高溫氧化實驗後外觀……………………………………………………………51 圖3-12銲錫合金高溫氧化測試後表面元素縱深分佈分析(a)Zn-25Sn(b)Zn-25Sn-0.02Ti(c)Zn-25Sn-0.15Ti…………………………………………………………………………………………………………………………………………………………52 圖3-13 Zn-25Sn銲錫合金於435℃與銅線材1秒內潤濕反應曲線圖…………………………………55 圖3-14銅線材與epoxy於室溫1秒內潤濕反應曲線圖………………………………………………………………57 圖3-15 Zn-25Sn-xTi銲錫合金於435℃與銅線材1秒內潤濕反應曲線圖………………………59 圖3-16 Zn-25Sn-xTi銲錫合金於435℃與銅線材1秒內潤濕反應孕育期曲線線性迴歸分析所得之斜率……60 圖3-17 (a)Zn-25Sn-0.02Ti(b)Zn-25Sn-0.05Ti銲錫合金與銅線材潤濕反應10秒之以二次離子質譜儀(SIMS)偵測其界面元素縱深分佈曲線………………………………………………………………………………………………62 圖3-17(續) (c)Zn-25Sn-0.1Ti(d)Zn-25Sn-0.15Ti銲錫合金與銅線材潤濕反應10秒之以二次離子質譜儀(SIMS)偵測其界面元素縱深分佈曲線………………………………………………………………………………………………63 圖3-18 (a)Zn-25Sn(b)Zn-25Sn-0.02Ti(c)Zn-25Sn-0.15Ti銲錫合金與銅線材潤濕反應1秒界面微觀結構……………………………………………………………………………………………………………………………………………………………………………64 圖3-19 Zn-25Sn-xTi(x=0、0.02、0.15)銲錫合金與銅線材潤濕反應1秒界面生成之介金屬化合物厚度 …………………………………………………………………………………………………………………………………………………………………………………66 圖3-20 Zn-25Sn-xTi(x=0、0.02、0.15)銲錫合金於415-435℃與銅線材1秒內潤濕反應孕育期曲線線性迴歸分析所得之斜率 ………………………………………………………………………………………………………………………………………67 圖3-21 Zn-25Sn-xTi銲錫合金於415-435℃時與銅線材潤濕反應之潤濕時間………………69 圖3-22 Zn-25Sn-xTi銲錫合金於415-435℃時利用潤濕天平量測之表面張力………………70 圖3-23 Zn-25Sn-xTi銲錫合金於415-435℃時與銅線材潤濕反應之最大潤濕力……………72 圖3-24 Zn-25Sn-xTi銲錫合金於435℃時與銅線材潤濕反應銲錫與銅線材間潤濕角度…73 圖3-25 Zn-25Sn-xTi之Arrhenius活化能曲線圖……………………………………………………………………………75 圖3-26 Zn-25Sn-xTi銲錫合金與銅線材潤濕反應活化能………………………………………………………………76 圖3-27 Zn-25Sn銲錫合金與銅線材潤濕反應10秒界面顯微結構………………………………………………78 圖3-28 (a) Zn-25Sn-0.02Ti (b) Zn-25Sn-0.05Ti (c) Zn-25Sn-0.1Ti (d) Zn-25Sn-0.15Ti 銲錫合金與銅線材潤濕反應10秒界面顯微結構……………………………………………………………………………………………79 圖3-29 Zn-25Sn-xTi(x=0-0.15)銲錫合金與銅線材潤濕反應10秒界面生成之介金屬化合物平均厚度…80 圖3-30 Zn-25Sn銲錫合金與銅基材潤濕反應10秒界面元素分佈分析結果……………………………………82 圖3-30(續) Zn-25Sn-0.02Ti銲錫合金與銅基材潤濕反應10秒界面元素分佈分析結果………83 圖3-30(續) Zn-25Sn-0.15Ti銲錫合金與銅基材潤濕反應10秒界面元素分佈分析結果…………84 圖3-31 (a) Zn-25Sn(b)Zn-25Sn-0.02Ti(c)Zn-25Sn-0.15Ti銲錫合金與銅線材潤濕反應20秒界面微觀結構………………………………………………………………………………………………………………………………………………………………………………86 圖3-32 (a) Zn-25Sn(b)Zn-25Sn-0.02Ti(c)Zn-25Sn-0.15Ti銲錫合金與銅線材潤濕反應1-20秒界面介金屬化合物平均厚度………………………………………………………………………………………………………………………………………………87 圖3-33 Zn-25Sn-xTi(x=0、0.02、0.15)銲錫合金與銅基材潤濕反應過後於130℃時效熱處理26、51、91小時界面介金屬化合物平均厚度………………………………………………………………………………………………………………………89 圖3-34 (a) Zn-25Sn(b)Zn-25Sn-0.02Ti(c)Zn-25Sn-0.15Ti銲錫合金與銅基材潤濕反應後於150℃時效熱處理200小時界面微觀結構…………………………………………………………………………………………………………………………………92

    [1]D. P. Seraphim, R. C. Lasky, and C. Y. Li, "Principles of electronic packaging," McGraw-Hill, pp. 1-15, 1989.
    [2]H. Xiao, "Introduction to semiconductor manufacturing technology," Prentice Hall, pp. 44-48, 2000.
    [3]D. G. Ivey, "Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications," Micron, vol. 29, pp. 281-287, 1998.
    [4]R. K. Shiue, L. W. Tsay, C. L. Lin, and J. L. Ou, "A study of Sn-Bi-Ag-(In) lead-free solders," Journal of Materials Science, vol. 38, pp. 1269-1279, 2003.
    [5]L. Halbo and P. Ohlckers, 'Electronic components, packaging and production' University of Oslo, 1995.
    [6]S. W. Yoon, J. R. Soh, H. M. Lee, and B. J. Lee, "Thermodynamics-aided alloy design and evaluation of Pb-free solder, SnBiInZn system," Acta Materialia, vol. 45, pp. 951-960, 1997.
    [7]J. Baffett, "Reliability of electron devices, failure physics and analysis electronic systems packaging : future reliability challenges," Microelectronics Reliability, vol. 38, pp. 1277-1286, 1998.
    [8]M. Arra, D. Shangguan, S. Yi, R. Thalhammer, and H. Fockenberger, "Development of lead-free wave soldering process," IEEE Transactions on Electronics Packaging Manufacturing, vol. 25, pp. 289-299, 2002.
    [9]B. I. Noh, J. M. Koo, J. W. Kim, D. G. Kim, J. D. Nam, J. Joo, and S. B. Jung, "Effects of number of reflows on the mechanical and electrical properties of BGA package," Intermetallics, vol. 14, pp. 1375-1378, 2006.
    [10]J. A. Cooper and A. Agarwal, "SiC power-switching devices-the second electronics revolution?," Proceedings of the IEEE, vol. 90, pp. 956-968, 2002.
    [11]Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohnuma, and K. Ishida, "Reliability of wire-bonding and solder joint for high temperature operation of power semiconductor device," Microelectronics Reliability, vol. 47, pp. 2147-2151, 2007.
    [12]Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohnuma, and K. Ishida, "Pb-free high temperature solder joints for power semiconductor devices," Transactions of The Japan Institute of Electronics Packaging, vol. 2, pp. 79-84, 2009.
    [13]N. Kang, H. S. Na, S. J. Kim, and C. Y. Kang, "Alloy design of Zn–Al–Cu solder for ultra high temperatures," Journal of Alloys and Compounds, vol. 467, pp. 246-250, 2009.
    [14]P. G. Neudeck, R. S. Okojie, and C. Liang-Yu, "High-temperature electronics - a role for wide bandgap semiconductors?," Proceedings of the IEEE, vol. 90, pp. 1065-1076, 2002.
    [15]K. Suganuma, S.-J. Kim, and K.-S. Kim, "High-temperature lead-free solders: properties and possibilities," JOM, vol. 61, pp. 64-71, 2009.
    [16]T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, 'Binary alloy phase diagrams,'. ASM Metals Park, 1986.
    [17]K. Suganuma, "Advances in lead-free electronics soldering," Current Opinion in Solid State and Materials Science, vol. 5, pp. 55-64, 2001.
    [18]H. Wang, X. Ma, F. Gao, and Y. Qian, "Sn concentration on the reactive wetting of high-Pb solder on Cu substrate," Materials Chemistry and Physics, vol. 99, pp. 202-205, 2006.
    [19]H. Schoeller, S. Bansal, A. Knobloch, D. Shaddock, and J. Cho, "Effect of alloying elements on the creep behavior of high Pb-based solders," Materials Science and Engineering: A, vol. 528, pp. 1063-1070, 2011.
    [20]V. Chidambaram, J. Hattel, and J. Hald, "High-temperature lead-free solder alternatives," Microelectronic Engineering, vol. 88, pp. 981-989, 2011.
    [21]M. Abtew and G. Selvaduray, "Lead-free solders in microelectronics," Materials Science and Engineering: R: Reports, vol. 27, pp. 95-141, 2000.
    [22]W. Wondrak, "European symposium on reliability of electron devices, failure physics and analysis physical limits and lifetime limitations of semiconductor devices at high temperatures," Microelectronics Reliability, vol. 39, pp. 1113-1120, 1999.
    [23]P. T. Vianco and D. R. Frear, "Issues in the replacement of lead-bearing solders," JOM, vol. 45, pp. 14-19, 1993.
    [24]T. Takahashi, S. Komatsu, H. Nishikawa, and T. Takemoto, "Improvement of high-temperature performance of Zn-Sn solder joint," Journal of Electronic Materials, vol. 39, pp. 1241-1247, 2010.
    [25]K. Shinohara and Q. Yu, "Fatigue life evaluation accuracy of power devices using finite element method," International Journal of Fatigue, vol. 33, pp. 1221-1234, 2011.
    [26]G. Zeng, S. McDonald, and K. Nogita, "Development of high-temperature solders: review," Microelectronics Reliability, vol. 52, pp. 1306-1322, 2012.
    [27]M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, "Zn-Al based alloys as Pb-free solders for die attach," Journal of Electronic Materials, vol. 31, pp. 278-285, 2002.
    [28]J. N. Lalena, N. F. Dean, and M. W. Weiser, "Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment," Journal of Electronic Materials, vol. 31, pp. 1244-1249, 2002.
    [29]J. M. Song, H. Y. Chuang, and Z. M. Wu, "Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates," Journal of Electronic Materials, vol. 35, pp. 1041-1049, 2006.
    [30]Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, and K. Ishida, "Interfacial reaction between Cu substrates and Zn-Al base high-temperature Pb-free solders," Journal of Electronic Materials, vol. 37, pp. 314-323, 2008.
    [31]J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, "Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps," IEEE Transactions on Advanced Packaging, vol. 24, pp. 569-575, 2001.
    [32]Q. Wang, S. H. Choa, W. Kim, J. Hwang, S. Ham, and C. Moon, "Application of Au-Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging," Journal of Electronic Materials, vol. 35, pp. 425-432, 2006.
    [33]G. S. Matijasevic, C. Y. Wang, and C. C. Lee, "Void free bonding of large silicon dice using gold-tin alloys," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 13, pp. 1128-1134, 1990.
    [34]H. Oppermann and M. Hutter, 'Handbook of wafer bonding,'Wiley-VCH Verlag GmbH & Co. KGaA, pp. 119-138, 2012.
    [35]J. E. Spinelli, B. L. Silva, and A. Garcia, "Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications," Materials & Design, vol. 58, pp. 482-490, 2014.
    [36]X. Zhu, R. Wang, C. Peng, X. Wei, and J. Peng, "Reactions and mechanical properties between AuSn20 solders and metalized Al–Si alloys for electronic packaging application," Journal of Materials Science: Materials in Electronics, vol. 25, pp. 742-748, 2014.
    [37]J. M. Song, H. Y. Chuang, and T. X. Wen, "Thermal and tensile properties of Bi-Ag Alloys," Metallurgical and Materials Transactions A, vol. 38, pp. 1371-1375, 2007.
    [38]M. Shimoda, T. Yamakawa, K. Shiokawa, H. Nishikawa, and T. Takemoto, "Effects of Ag content on the mechanical properties of Bi-Ag alloys substitutable for Pb based solder," Transactions of JWRI, vol. 41, pp. 51-54, 2012.
    [39]Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo, and X. Li, "Investigation of rare earth-doped BiAg high-temperature solders," Journal of Materials Science: Materials in Electronics, vol. 21, pp. 875-881, 2010.
    [40]T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, "Zn-Al-Mg-Ga alloys as Pb-free solder for die-attaching use," Journal of Electronic Materials, vol. 28, pp. 1172-1175, 1999.
    [41]A. Haque, B. H. Lim, A. S. M. A. Haseeb, and H. H. Masjuki, "Die attach properties of Zn–Al–Mg–Ga based high-temperature lead-free solder on Cu lead-frame," Journal of Materials Science: Materials in Electronics, vol. 23, pp. 115-123, 2012.
    [42]Y. Yamada, Y. Yagi, Y. Takaku, I. Ohnuma, Y. Sutou, R.Kainuma, and K. Ishida, "Pb-free high temperature solders for power device packaging," Microelectronics Reliability, vol. 46, pp. 1932-1937, 2006.
    [43]L. Li, Y. Liu, H. Gao, and Z. Gao, "Phase formation sequence of high-temperature Zn–4Al–3Mg solder," Journal of Materials Science: Materials in Electronics, vol. 24, pp. 336-344, 2013.
    [44]Y. Xiao, H. Ji, M. Li, J. Kim, and H. Kim, "Microstructure and joint properties of ultrasonically brazed Al alloy joints using a Zn–Al hypereutectic filler metal," Materials & Design, vol. 47, pp. 717-724, 2013.
    [45]W. R. Osório and A. Garcia, "Modeling dendritic structure and mechanical properties of Zn–Al alloys as a function of solidification conditions," Materials Science and Engineering: A, vol. 325, pp. 103-111, 2002.
    [46]S. Kim, K.-S. Kim, S.-S. Kim, and K. Suganuma, "Interfacial reaction and die attach properties of Zn-Sn high-temperature solders," Journal of Electronic Materials, vol. 38, pp. 266-272, 2009.
    [47]S. Kim, K.-S. Kim, S.-S. Kim, K. Suganuma, and G. Izuta, "Improving the reliability of Si die attachment with Zn-Sn-based high-temperature Pb-free solder using a TiN diffusion barrier," Journal of Electronic Materials, vol. 38, pp. 2668-2675, 2009.
    [48]J. E. Lee, K. S. Kim, K. Suganuma, M. Inoue, and G. Izuta, "Thermal properties and phase stability of Zn-Sn and Zn-In alloys as high temperature lead-free solder," Materials Transactions, vol. 48, pp. 584-593, 2007.
    [49]R. Mahmudi and M. Eslami, "Shear strength of the Zn–Sn high-temperature lead-free solders," Journal of Materials Science: Materials in Electronics, vol. 22, pp. 1168-1172, 2011.
    [50]R. Mahmudi and M. Eslami, "Impression creep behavior of Zn-Sn high-temperature lead-free solders," Journal of Electronic Materials, vol. 39, pp. 2495-2502, 2010.
    [51]E. P. Lopez, P. T. Vianco, and J. A. Rejent, "Solderability testing of 95.5Sn-3.9Ag-0.6Cu solder on oxygen-free high-conductivity copper and Au-Ni-Plated kovar," Journal of Electronic Materials, vol. 32, pp. 254-260, 2003.
    [52]T. S. Chow, "Wetting of rough surfaces," Journal of Physics: Condensed Matter, vol. 10, p. L445, 1998.
    [53]D. Q. Yu, J. Zhao, and L. Wang, 'Improvement on the microstructure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements,' Journal of Alloys and Compounds, vol. 376, pp. 170-175, 2004.
    [54]F. Guo, S. Choi, J. P. Lucas, and K. N. Subramanian, "Effects of reflow on wettability, microstructure and mechanical properties in lead-free solders," Journal of Electronic Materials, vol. 29, pp. 1241-1248, 2000.
    [55]Q. Zeng, J. Guo, X. Gu, X. Zhao, and X. Liu, "Wetting behaviors and interfacial reaction between Sn-10Sb-5Cu high temperature lead-free solder and Cu substrate," Journal of Materials Science & Technology, vol. 26, pp. 156-162, 2010.
    [56]M. Dong, Y. Wang, J. Cai, T. Feng, and Y. Pu, "Effects of nitrogen on wettability and reliability of lead-free solder in reflow soldering," International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, pp. 147-151, 2009.
    [57]L. Y. Lee and K. L. Lin, "Solderability of electroless nickel alloys using wetting balance technique," Japanese Journal of Applied Physics, vol. 33, pp. 4708-4713, 1994.
    [58]K. M. Martorano, M. A. Martorano, and S. D. Brandi, "Optimal conditions for the wetting balance test," Journal of Materials Processing Technology, vol. 209, pp. 3089-3095, 2009.
    [59]R. Mayappan, A. B. Ismail, Z. A. Ahmad, T. Ariga, and L. B. Hussain, "Effect of sample perimeter and temperature on Sn–Zn based lead-free solders," Materials Letters, vol. 60, pp. 2383-2389, 2006.
    [60]鄭壽昌, "錫-鋅-銀-鋁無鉛銲錫的機械、潤濕及時效性之研究," 博士學位論文, 國立成功大學材料科學及工程學系, 2004.
    [61]A. Siewiorek, A. Kudyba, N. Sobczak, M. Homa, Z. Huber, Z. Adamek, and J. Wojewoda-Budka, "Effects of PCB substrate surface finish and flux on solderability of lead-free SAC305 alloy," Journal of Materials Engineering and Performance, vol. 22, pp. 2247-2252, 2013.
    [62]C. Melton, "The effect of reflow process variables on the wettability of lead-free solders," JOM, vol. 45, pp. 33-35, 1993.
    [63]E. E. M. Noor, N. M. Sharif, C. K. Yew, T. Ariga, A. B. Ismail, and Z. Hussain, "Wettability and strength of In–Bi–Sn lead-free solder alloy on copper substrate," Journal of Alloys and Compounds, vol. 507, pp. 290-296, 2010.
    [64]賴瑞協, "Sn-8.5Zn-xAg-0.01Al-0.1Ga無鉛銲錫合金與銅基材之潤濕行為與界面反應研究 " 碩士學位論文, 國立成功大學材料科學及工程學系, 2007.
    [65]Z. Xia, Z. Chen, Y. Shi, N. Mu, and N. Sun, "Effect of rare earth element additions on the microstructure and mechanical properties of tin-silver-bismuth solder," Journal of Electronic Materials, vol. 31, pp. 564-567, 2002.
    [66]Z. G. Chen, Y. W. Shi, Z. D. Xia, and Y. F. Yan, "Study on the microstructure of a novel lead-free solder alloy SnAgCu-RE and its soldered joints," Journal of Electronic Materials, vol. 31, pp. 1122-1128, 2002.
    [67]C. M. L. Wu and Y. W. Wong, "Rare-earth additions to lead-free electronic solders," Journal of Materials Science: Materials in Electronics, vol. 18, pp. 77-91, 2007.
    [68]J. X. Wang, S. B. Xue, Z. J. Han, S. L. Yu, Y. Chen, Y. P. Shi, and H. Wang, "Effects of rare earth Ce on microstructures, solderability of Sn–Ag–Cu and Sn–Cu–Ni solders as well as mechanical properties of soldered joints," Journal of Alloys and Compounds, vol. 467, pp. 219-226, 2009.
    [69]C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, "The properties of Sn-9Zn lead-free solder alloys doped with trace rare earth elements," Journal of Electronic Materials, vol. 31, pp. 921-927, 2002.
    [70]Y. H. Hu, S. B. Xue, H. Wang, H. Ye, Z. X. Xiao, and L. L. Gao, "Effects of rare earth element Nd on the solderability and microstructure of Sn–Zn lead-free solder," Journal of Materials Science: Materials in Electronics, vol. 22, pp. 481-487, 2011.
    [71]X. Chen, A. Hu, M. Li, and D. Mao, "Study on the properties of Sn–9Zn–xCr lead-free solder," Journal of Alloys and Compounds, vol. 460, pp. 478-484, 2008.
    [72]H. R. Kotadia, O. Mokhtari, M. Bottrill, M. P. Clode, M. A. Green, and S. H. Mannan, "Reactions of Sn-3.5Ag-based solders containing Zn and Al additions on Cu and Ni(P) substrates," Journal of Electronic Materials, vol. 39, pp. 2720-2731, 2010.
    [73]I. E. Anderson, J. W. Walleser, J. L. Harringa, F. Laabs, and A. Kracher, "Nucleation control and thermal aging resistance of near-eutectic Sn-Ag-Cu-X solder jointsby alloy design," Journal of Electronic Materials, vol. 38, pp. 2770-2779, 2009.
    [74]I. E. Anderson, J. C. Foley, B. A. Cook, J. Harringa, R. L. Terpstra, and O. Unal, "Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability," Journal of Electronic Materials, vol. 30, pp. 1050-1059, 2001.
    [75]Y. W. Wang, Y. W. Lin, C. T. Tu, and C. R. Kao, "Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu," Journal of Alloys and Compounds, vol. 478, pp. 121-127, 2009.
    [76]J. C. Liu, G. Zhang, J. S. Ma, and K. Suganuma, "Ti addition to enhance corrosion resistance of Sn–Zn solder alloy by tailoring microstructure," Journal of Alloys and Compounds, vol. 644, pp. 113-118, 2015.
    [77]C. L. Chuang, L. C. Tsao, H. K. Lin, and L. P. Feng, "Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder," Materials Science and Engineering: A, vol. 558, pp. 478-484, 2012.
    [78]W. M. Chen, S. K. Kang, and C. R. Kao, "Effects of Ti addition to Sn–Ag and Sn–Cu solders," Journal of Alloys and Compounds, vol. 520, pp. 244-249, 2012.
    [79]G. P. Vassilev, E. S. Dobrev, and J. C. Tedenac, "Phase diagram of the Sn–Zn–Ti system," Journal of Alloys and Compounds, vol. 407, pp. 170-175, 2006.
    [80]G. P. Vassilev, X. J. Liu, and K. Ishida, "Reaction kinetics and phase diagram studies in the Ti–Zn system," Journal of Alloys and Compounds, vol. 375, pp. 162-170, 2004.
    [81]J. S. Colton and N. P. Suh, "The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations," Polymer Engineering & Science, vol. 27, pp. 485-492, 1987.
    [82]E. Gaul, 'Coloring titanium and related metals by electrochemical oxidation,' Journal of Chemical Education, vol. 70, p. 176-178, 1993.
    [83]H. J. T. Ellingham, "Reducibility of oxides and sulfides in metallurgical processes.," J Soc Chem Ind, vol. 63, pp. 125-133, 1944.
    [84]W. Qu, S. Zhou, and H. Zhuang, "Effect of Ti content and Y additions on oxidation behavior of SnAgTi solder and its application on dissimilar metals soldering," Materials & Design, vol. 88, pp. 737-742, 2015.
    [85]R. R. Hultgren and A. S. f. Metals, 'Selected values of the thermodynamic properties of binary Alloys,' American Society for Metals, pp. 795-822, 1973.
    [86]F. G. Yost, F. M. Hosking, and D. R. Frear, 'The Mechanics of solder alloy wetting and spreading,' Van Nostrand Reinhold, pp. 148-150, 1993.
    [87]K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, "Heat resistance of Sn–9Zn solder/Cu interface with or without coating," Journal of Materials Research, vol. 15, pp. 884-891, 2000.
    [88]S. W. Park, S. Nagao, T. Sugahara, K.-S. Kim, and K. Suganuma, "Retarding intermetallic compounds growth of Zn high-temperature solder and Cu substrate by trace element addition," Journal of Materials Science: Materials in Electronics, vol. 24, pp. 4704-4712, 2013.
    [89]C. M. Chen and C. H. Chen, "Interfacial reactions between eutectic SnZn solder and bulk or thin-film Cu substrates," Journal of Electronic Materials, vol. 36, pp. 1363-1371, 2007.
    [90]K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, "Wetting and interface microstructure between Sn–Zn binary alloys and Cu," Journal of Materials Research, vol. 13, pp. 2859-2865, 1998.
    [91]J. Y. Wang, C. F. Lin, and C. M. Chen, "Retarding the Cu5Zn8 phase fracture at the Sn–9 wt.% Zn/Cu interface," Scripta Materialia, vol. 64, pp. 633-636, 2011

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE